
Running Jobs with Platform Lava™
Version 6.1
July 2005

Comments to: doc@platform.com

mailto:jsmith@platform.com?Subject=Lava%20Documentation%20Feedback%20(Using%20Platform%20Lava)

Copyright Platform Lava Version 6.1 software for workload management

© 1994-2005, Platform Computing Corporation. All Rights Reserved.

We’d like to hear from
you

You can help us make this manual better by telling us what you think of the content,
organization, and usefulness of the information. If you find an error, or just want to make a
suggestion for improving this manual, please address your comments to doc@platform.com.

Your comments should pertain only to Platform documentation. For product support, contact
support@platform.com.

Although the information in this document has been carefully reviewed, Platform Computing
Corporation (“Platform”) does not warrant it to be free of errors or omissions. Platform
reserves the right to make corrections, updates, revisions or changes to the information in this
document.

UNLESS OTHERWISE EXPRESSLY STATED BY PLATFORM, THE PROGRAM DESCRIBED IN THIS
DOCUMENT IS PROVIDED “AS IS” AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL PLATFORM
COMPUTING BE LIABLE TO ANYONE FOR SPECIAL, COLLATERAL, INCIDENTAL, OR
CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION ANY LOST PROFITS, DATA, OR
SAVINGS, ARISING OUT OF THE USE OF OR INABILITY TO USE THIS PROGRAM.

Trademarks ™ LAVA, ACCELERATING INTELLIGENCE, PLATFORM COMPUTING, and the PLATFORM logo are
trademarks of Platform Computing Corporation in the United States and in other jurisdictions.

UNIX is a registered trademark of The Open Group.

Other products or services mentioned in this document are identified by the trademarks or
service marks of their respective owners.

This product includes software developed by the Rocks Cluster Group at the San Diego
Supercomputer Center and its contributors.

Last update July 7 2005

mailto:doc@platform.com?Subject=Lava%20Documentation%20Feedback
mailto:support@platform.com

Contents
4 Running Jobs . . 5

Submitting Jobs . 6

Modifying jobs . . 10

Job Dependency Scheduling . . 11

Pre-Execution and Post-Execution Commands 14

Job Starters . 16

5 Controlling Jobs . 17

Removing, Suspending, and Resuming Jobs 18

Requeuing and Rerunning Jobs . 20

Forcing Jobs to Run . 21

Moving Jobs . 22

6 Monitoring Jobs . 23

Viewing Job Information . . 24

Viewing Job History . 27

Viewing Job Output . 28

Index . 29
Running Jobs with Platform Lava 3

Contents

4
 Running Jobs with Platform Lava

C H A P T E R

4
Running Jobs

Contents ◆ �Submitting Jobs� on page 6
◆ �Modifying jobs� on page 10
◆ �Job Dependency Scheduling� on page 11
◆ �Pre-Execution and Post-Execution Commands� on page 14
◆ �Job Starters� on page 16
Running Jobs with Platform Lava 5

Submitting Jobs

6

Submitting Jobs

Submitting a job
You submit a job with the bsub command. If you do not specify any options, the job is
submitted to the default queue configured by the Lava administrator (usually the
normal queue).
For example, if you submit the job my_job without specifying a queue, the job goes to
the default queue.
$ bsub my_job
Job <1234> is submitted to default queue <normal>

In the above example, 1234 is the job ID assigned to this job, and normal is the name
of the default job queue.
See the bsub command in the Platform Lava Man Pages for more details on bsub
options.

Submitting a script
Any command or script you can execute from a shell prompt can be submitted to Lava
for batch execution.
To submit a script to Lava:
1 Create a script. For example, create the following script and save it as myscript.

#!bin/sh
#BSUB -q test
#BSUB -o outfile -R "mem>10"
myjob arg1 arg2
#BSUB -J myjob
^D

2 Make the script executable. For example:
$ chmod u+x myscript

3 Submit the script to Lava:
$ bsub < myscript

Job <1234> is submitted to queue <normal>.

Note ◆ Command-line options override embedded options.
◆ Submission options can be specified anywhere in the standard input. In the above

example, the -J option of bsub is specified after the command to be run.
◆ More than one option can be specified on one line.

Submitting interactive jobs
Use the bsub -I option to submit batch interactive jobs.
For more details, see the bsub(1) man page.
Interactive batch jobs cannot be rerunnable (bsub -r) or submitted to rerunnable
queues (RERUNNABLE=y in lsb.queues).
Running Jobs with Platform Lava

Chapter 4
Running Jobs
Submitting a job to run under a particular shell
By default, Lava runs batch jobs using the Bourne (/bin/sh) shell. You can specify the
shell under which a job is to run. This is done by specifying an interpreter in the first line
of the script.
For example:
$ bsub
bsub> #!/bin/csh -f
bsub> set coredump=‘ls |grep core‘
bsub> if ("$coredump" != "") then
bsub> mv core core.‘date | cut -d" " -f1‘
bsub> endif
bsub> myjob
bsub> ^D

Job <1234> is submitted to default queue <normal>.

The bsub command must read the job script from standard input to set the execution
shell. If you do not specify a shell in the script, the script is run using /bin/sh. If the
first line of the script starts with a # not immediately followed by an exclamation mark
(!), then /bin/csh is used to run the job.
For example:
$ bsub

bsub> # This is a comment line. This tells the system to use /bin/csh to
bsub> # interpret the script.
bsub>
bsub> setenv DAY ‘date | cut -d" " -f1‘
bsub> myjob
bsub> ^D

Job <1234> is submitted to default queue <normal>.

If you frequently need to run jobs under a particular shell, you can specify an alternate
shell using a command-level job starter and run your jobs interactively. For information
on command-level job starters, see �Job Starters� on page 16.

Submitting a job to specific hosts
Submitting a job
to a single host

To indicate that a job must run on one of the specified hosts, use the
bsub -m "hostA hostB ..." option.
By specifying a single host, you can force your job to wait until that host is available and
then run on that host.
For example:
$ bsub -q idle -m "hostA hostD hostB" myjob

This command submits myjob to the idle queue and tells Lava to choose one host from
hostA, hostD, and hostB to run the job. All other batch scheduling conditions still
apply, so the selected host must be eligible to run the job.

Tip If you have applications that require specific resources, create a new Boolean
resource. For more information, see Inside Platform Lava.
Running Jobs with Platform Lava 7

Submitting Jobs

8

Submitting a job
with resource
requirements

To submit a job that will run on 32-bit Linux or 64-bit Linux:
$ bsub -R "type==LINUX86 || type==LINUX64" myjob

When you submit a job, you can also exclude a host by specifying a resource requirement
using hname resource:
$ bsub -R "hname!=hostb && type==LINUX86" myjob

See below for more information on submitting jobs with resource requirements.

Specifying resource requirements for a job
Each job can specify resource requirements. Resource requirements specified for a job
override any resource requirements specified in the remote task list.
In some cases, the queue specification sets an upper or lower bound on a resource. If
you attempt to exceed that bound, your job will be rejected.

Syntax To specify resource requirements for your job, use bsub -R and specify the resource
requirement string.

Examples $ bsub -R "swp > 15 && linux order[cpu]" myjob

This runs myjob on a Linux host that is lightly loaded (CPU utilization) and has at least
15 MB of swap memory available.
Also see �Submitting a job to specific hosts� on page 7 for the two examples using
resource requirements.

Specifying resource usage limits for a job
To specify resource usage limits at the job level, use one of the following bsub options:
◆ -C core_limit
◆ -c cpu_limit
◆ -D data_limit
◆ -F file_limit
◆ -M mem_limit
◆ -W run_limit
◆ -S stack_limit
◆ -T thread_limit
◆ -v swap_limit
Job-level resource usage limits specified at job submission override the queue
definitions.
For supported resource usage limits and syntax, see the Platform Lava Man Pages.

Running Parallel Jobs
Specifying the

number of
processors

When submitting a parallel job that requires multiple processors, you can specify the
exact number of processors to use.
To submit a parallel job, use bsub -n and specify multiple processors.

Example $ bsub -n 4 myjob

This command submits myjob as a parallel job. The job is started when 4 job slots are
available.
Running Jobs with Platform Lava

Chapter 4
Running Jobs
Job slot limits for
parallel jobs

A job slot is the basic unit of processor allocation in Lava. A sequential job uses one job
slot. A parallel job that has N components (tasks) uses N job slots, which can span
multiple hosts.

Job submission examples
Submitting a job to a specific queue

If you have an urgent job my_job to run, you can submit it to the priority queue:
$ bsub -q priority my_job

If you want to use hosts owned by others and you do not want to bother the owners,
you can run your low priority jobs on the idle queue so that as soon as the owner comes
back, your jobs get suspended.

Submitting a job with a start time
If you do not want to start your job immediately when you submit it, use bsub -b to
specify a start time. Lava will not dispatch the job before this time. For example:
$ bsub -b 5:00 myjob

This example submits a job that remains pending until after the local time on the master
host reaches 5 a.m.

Submitting a job with an end time
Use bsub -t to submit a job and specify a time after which the job should be
terminated. For example:
$ bsub -b 11:12:5:40 -t 11:12:20:30 myjob

The job called myjob is submitted to the default queue and will start after November
12 at 05:40 a.m. If the job is still running on November 12 at 8:30 p.m., it will be killed.

Submitting a batch interactive job
$ bsub -I -q interactive -n 4,10 myapp

This example starts myapp on 4 to 10 processors and displays the output on the
terminal.
Running Jobs with Platform Lava 9

Modifying jobs

10
Modifying jobs
If your submitted jobs are pending (bjobs shows the job in PEND state), use the bmod
command to modify job submission parameters.
See the bmod command in the Platform Lava Man Pages for more details.

Changing a job
parameter

To change a specific job parameter, use bmod with the bsub option used to specify the
parameter. The specified options replace the submitted options. The following example
uses the -b option to change the start time of job 101 to 2:00 a.m.:
$ bmod -b 2:00 101

Resetting To reset an option to its default submitted value (undo a bmod), append the n character
to the option name, and do not include an option value. The following example resets
the start time for job 101 back to its default value:
$ bmod -bn 101
Running Jobs with Platform Lava

Chapter 4
Running Jobs
Job Dependency Scheduling
Sometimes, the scheduling of a job depends on the result of another job. For example,
a series of jobs could process input data, run a simulation, generate images based on the
simulation output, and finally, record the images on a high-resolution film output device.
Each step can only be performed after the previous step finishes successfully, and all
subsequent steps must be aborted if any step fails.
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script, clean
up job files, or transfer job output after the job completes.
In Lava, any job can be dependent on other Lava jobs. Lava will not place your job unless
this dependency expression evaluates to TRUE. If you specify a dependency on a job
that Lava cannot find (such as a job that has not yet been submitted), your job
submission fails.

Specifying a job dependency
To specify job dependencies, use bsub -w.

Syntax bsub -w 'dependency_expression'
The dependency expression is a logical expression composed of one or more
dependency conditions. For syntax of individual dependency conditions, see
�Dependency conditions� on page 11.
To make a dependency expression of multiple conditions, use the following logical
operators:

❖ && (AND)
❖ || (OR)
❖ ! (NOT)

◆ If necessary, use parentheses to indicate the order of operations.
◆ Enclose the dependency expression in single quotes (') to prevent the shell from

interpreting special characters (space, any logic operator, or parentheses). If you use
single quotes for the dependency expression, use double quotes for quoted items
within it, such as job names.

◆ Job names specify only your own jobs unless you are a Lava administrator.
◆ Use double quotes (") around job names that begin with a number.
◆ In the job name, specify the wildcard character (*) at the end of a string to indicate

all jobs whose name begins with the string. For example, if you use jobA* as the
job name, it specifies jobs named jobA, jobA1, jobA_test, and jobA.log.

Dependency conditions
The following dependency conditions can be used with any job:
◆ done(job_ID | "job_name")
◆ ended(job_ID | "job_name")
◆ exit(job_ID [,[op] exit_code])
◆ exit("job_name"[,[op] exit_code])
◆ job_ID | "job_name"
Running Jobs with Platform Lava 11

Job Dependency Scheduling

12
◆ post_done(job_ID | "job_name")
◆ post_err(job_ID | "job_name")
◆ started(job_ID | "job_name")

done
Syntax done(job_ID | "job_name")

Description The job state is DONE.

ended
Syntax ended(job_ID | "job_name")

Description The job state is EXIT or DONE.

exit
Syntax exit(job_ID | "job_name"[,[operator] exit_code])

where operator represents one of the following relational operators:
◆ >
◆ >=
◆ <
◆ <=
◆ ==
◆ !=

Description The job state is EXIT, and the job�s exit code satisfies the comparison test.
If you specify an exit code with no operator, the test is for equality (== is assumed).
If you specify only the job, any exit code satisfies the test.

Examples ◆ exit (myjob)

The job named myjob is in the EXIT state, and it does not matter what its exit code
was.

◆ exit (678,0)

The job with job ID 678 is in the EXIT state, and terminated with exit code 0.
◆ exit ("678",!=0)

The job named 678 is in the EXIT state, and terminated with any non-zero exit
code.

Job ID or job name
Syntax job_ID | "job_name"

Description If you specify a job without a dependency condition, the test is for the DONE state
(Lava assumes the �done� dependency condition by default).

post_done
Syntax post_done(job_ID | "job_name")
Running Jobs with Platform Lava

Chapter 4
Running Jobs
Description The job state is POST_DONE (the post-processing of specified job has completed
without errors).

post_err
Syntax post_err(job_ID | "job_name")

Description The job state is POST_ERR (the post-processing of specified job has completed with
errors).

started
Syntax started(job_ID | "job_name")

Description The job state is:
◆ RUN, DONE, or EXIT
◆ PEND or PSUSP, and the job has a pre-execution command (bsub -E) that is

running
Running Jobs with Platform Lava 13

Pre-Execution and Post-Execution Commands

14
Pre-Execution and Post-Execution Commands
Each batch job can be submitted with optional pre- and post-execution commands. Pre-
execution and post-execution commands can be any executable command lines to be
run before a job is started or after a job finishes.
Some batch jobs require resources that Lava does not directly support. For example,
appropriate pre-execution and/or post-execution commands can be used to handle
various situations:
◆ Reserving devices like tape drives
◆ Creating and deleting scratch directories for a job
◆ Customizing scheduling
◆ Checking availability of software licenses
◆ Assigning jobs to run on specific processors on SMP machines
By default, the pre- and post-execution commands are run under the same user ID,
environment, and home and working directories as the batch job is run. If the command
is not in your normal execution path, the full path name of the command must be
specified.
To configure pre-execution and post-execution commands, see Inside Platform Lava.

Pre-execution commands
The pre-execution command returns information to Lava using its exit status. When a
pre-execution command is specified, the job is held in the queue until the specified pre-
execution command returns exit status zero (0).
If the pre-execution command exits with non-zero status, the batch job is not
dispatched. The job goes back to the PEND state, and Lava tries to dispatch another
job to that host.
If the pre-execution command exits with a value of 99, the job will not go back to the
PEND state; it will exit. This gives you flexibility to abort the job if the pre-execution
command fails.

Post-execution commands
If a post-execution command is specified, then the command is run after the job is
finished regardless of the exit state of the job.
Post-execution commands are typically used to clean up some state left by the pre-
execution and the job execution. Post-execution is only supported for a queue�not for
a specific job. For queue-level commands, see Inside Platform Lava.

Submitting a job with a pre-execution command
The bsub -E option specifies an arbitrary command to run before starting the batch
job. When Lava finds a suitable host on which to run a job, the pre-execution command
is executed on that host. If the pre-execution command runs successfully, the batch job
is started.
Job-level post-execution commands are not supported.
Running Jobs with Platform Lava

Chapter 4
Running Jobs
Post-execution job states
Some jobs may not be considered complete until some post-job processing is
performed. For example, a job may need to exit from a post-execution job script, clean
up job files, or transfer job output after the job completes.
The DONE or EXIT job states do not indicate whether post-processing is complete, so
jobs that depend on processing may start prematurely. Use the post_done and
post_err keywords on the bsub -w command to specify job dependency conditions
for job post-processing. The corresponding job states POST_DONE and POST_ERR
indicate the state of the post-processing. See �Dependency conditions� on page 11 in
the section on job dependency scheduling.
The bhist command displays the POST_DONE and POST_ERR states. The
resource usage of post-processing is not included in the job resource usage.
After the job completes, you cannot perform any job control on the post-processing.
Post-processing exit codes are not reported to Lava. The post-processing of a repetitive
job cannot be longer than the repetition period.
Running Jobs with Platform Lava 15

Job Starters

16
Job Starters
Some jobs have to run in a particular environment, or require some type of setup to be
performed before they run. In a shell environment, job setup is often written into a
wrapper shell script file that itself contains a call to start the desired job.
A job starter is a specified wrapper script or executable program that typically performs
environment setup for the job, then calls the job itself, which inherits the execution
environment created by the job starter. Lava controls the job starter process, rather than
the job. One typical use of a job starter is to customize Lava for use with specific
application environments.

Two ways to run job starters
You run job starters two ways in Lava. You can accomplish similar things with either job
starter, but their functional details are slightly different.

As a command Are user-defined. They run interactive jobs submitted using lsrun, lsgrun, or ch.
Command-level job starters have no effect on batch jobs, including interactive batch
jobs run with bsub -I.

To a queue Defined by the Lava administrator, and run batch jobs submitted to a queue defined
with the JOB_STARTER parameter set. Use bsub to submit jobs to queues with job-
level job starters.
A queue-level job starter is configured in the queue definition in lsb.queues. See
Inside Platform Lava for detailed information.

Pre-execution commands are not job starters
A job starter differs from a pre-execution command. A pre-execution command must
run successfully and exit before the Lava job starts. It can signal Lava to dispatch the job,
but because the pre-execution command is an unrelated process, it does not control the
job or affect the execution environment of the job. A job starter, however, is the process
that Lava controls. It is responsible for invoking Lava, and it controls the execution
environment of the job. (For information on pre-execution commands, see �Pre-
Execution and Post-Execution Commands� on page 14.)

Examples
The following are some examples of job starters:
◆ A job starter defined as /bin/ksh -c causes jobs to be run under a Korn shell

environment
◆ Setting the JOB_STARTER parameter in lsb.queues to $USER_STARTER

enables users to define their own job starters by defining the environment variable
USER_STARTER

◆ Setting a job starter to make clean causes the command make clean to be run
before the user job
Running Jobs with Platform Lava

C H A P T E R

5
Controlling Jobs

Contents ◆ �Removing, Suspending, and Resuming Jobs� on page 18
◆ �Requeuing and Rerunning Jobs� on page 20
◆ �Forcing Jobs to Run� on page 21
◆ �Moving Jobs� on page 22
Running Jobs with Platform Lava 17

Removing, Suspending, and Resuming Jobs

18
Removing, Suspending, and Resuming Jobs
Lava controls jobs dispatched to a host to enforce scheduling policies or in response to
user requests. The Lava system performs the following actions on a job:
◆ Suspend
◆ Resume
◆ Terminate

Killing a job
The bkill command cancels pending batch jobs and sends signals to running jobs. By
default, bkill sends the SIGKILL signal to running jobs.
Before SIGKILL is sent, SIGINT and SIGTERM are sent to give the job a chance to
catch the signals and clean up. The signals are forwarded from mbatchd to sbatchd,
which waits for the job to exit before reporting the status. Because of these delays, for a
short period of time after entering the bkill command, bjobs may still report that
the job is running. (For descriptions of mbatchd and sbatchd, see Inside Platform
Lava.)

Example To kill job 3421:
$ bkill 3421
Job <3421> is being terminated

Forcing removal of a job
If a job cannot be killed in the operating system, use bkill -r to force the removal of
the job from Lava.
The bkill -r command removes a job from the system without waiting for the job
to terminate in the operating system. This sends the same series of signals as bkill
without -r, except for the following differences:
◆ The job is removed from the system immediately
◆ The job is marked as EXIT
◆ Job resources that Lava monitors are released as soon as Lava receives the first signal

Suspending a job
Run bstop job_ID. Your job goes into USUSP state if the job is already started, or
into PSUSP state if it is pending. For example:
$ bstop 3421
Job <3421> is being stopped

suspends job 3421.
bstop sends the SIGSTOP signal for sequential jobs to the job:
SIGSTOP cannot be caught by user programs. The SIGSTOP signal can be configured
with the LSB_SIGSTOP parameter in lsf.conf.

Resuming a job
Run bresume job_ID. For example:
Running Jobs with Platform Lava

Chapter 5
Controlling Jobs
$ bresume 3421
Job <3421> is being resumed

resumes job 3421.
Resuming a user-suspended job does not put your job into RUN state immediately.
◆ If you job was pending before the suspension, bresume first puts your job into

PEND state. The job then waits to be scheduled and dispatched.
◆ If your job was running before the suspension, bresume first puts your job into

SSUSP state. The job then waits to be scheduled and dispatched.
Running Jobs with Platform Lava 19

Requeuing and Rerunning Jobs

20
Requeuing and Rerunning Jobs
You can kill and requeue a job while it is running or when it is suspended. Use the
brequeue command to requeue the job.
You can requeue and rerun a job if the execution host or the Lava system fails while the
job is running. Submit the job with the re-runnable option to enable automatic job
rerun.

Requeuing a job
You can use brequeue to kill a job and requeue it. When the job is requeued, it is
assigned the PEND status and the job�s new position in the queue is after other jobs of
the same priority.
◆ You can only use brequeue on running (RUN), user-suspended (USUSP), or

system-suspended (SSUSP) jobs.
◆ Users can only requeue their own jobs. Only root and Lava administrator can

requeue jobs submitted by other users.
◆ You cannot use brequeue on interactive batch jobs

Examples $ brequeue 109

Lava kills the job with job ID 109, and requeues it in the PEND state. If job 109 has a
priority of 4, it is placed after all the other jobs with the same priority.
$ brequeue -u user5 45 67 90

Lava kills and requeues three jobs belonging to User5. The jobs have the job IDs 45,
67, and 90.

Submitting a rerunnable job
To enable automatic job rerun at the job level, use bsub -r.
If the execution host fails, Lava dispatches the job to another host. You receive a mail
message informing you of the host failure and the requeuing of the job.
If the Lava system fails, Lava requeues the job when the system restarts.
Running Jobs with Platform Lava

Chapter 5
Controlling Jobs
Forcing Jobs to Run
A pending job can be forced to run with the brun command. This operation can only
be performed by a Lava administrator.
You can force a job to run on a particular host, to run until completion, and other
restrictions. For more information, see the brun command in the Platform Lava Man
Pages.
When a job is forced to run, any other constraints associated with the job such as
resource requirements or dependency conditions are ignored.

Force a job to run Use brun -m hostname job_ID to force a pending job to run. You must specify
the host on which the job will run. For example, the following command will force the
sequential job 104 to run on hostA:
$ brun -m hostA 104
Running Jobs with Platform Lava 21

Moving Jobs

22
Moving Jobs

Moving a job to the bottom of a queue
Use bbot to move jobs relative to your last job in the queue.
If invoked by a regular user, bbot moves the selected job after the last job with the same
priority submitted by the user to the queue.
If invoked by the Lava administrator, bbot moves the selected job after the last job with
the same priority submitted to the queue.

Moving a job to the top of a queue
Use btop to move jobs relative to your first job in the queue.
If invoked by a regular user, btop moves the selected job before the first job with the
same priority submitted by the user to the queue.
If invoked by the Lava administrator, btop moves the selected job before the first job
with the same priority submitted to the queue.

Switching jobs from one queue to another
You can use the command bswitch to change jobs from one queue to another. This is
useful if you submit a job to the wrong queue, or if the job is suspended because of
queue thresholds and you would like to resume the job.

Switch a single job Use bswitch to move pending and running jobs from queue to queue.
In the following example, job 5309 is switched to the priority queue:
$ bswitch priority 5309
Job <5309> is switched to queue <priority>

$ bjobs -u all
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
5308 user2 RUN normal hostA hostD /job500 Oct 23 10:16
5309 user2 RUN priority hostA hostB /job200 Oct 23 11:04
5311 user2 PEND night hostA /job700 Oct 23 18:17
5310 user1 PEND night hostB /myjob Oct 23 13:45

Switch all jobs Use bswitch -q from_queue to_queue 0 to switch all the jobs in a queue to
another queue. The example below selects jobs from the night queue and switches
them to the idle queue.
The -q option is used to operate on all jobs in a queue. The job ID number 0 specifies
that all jobs from the night queue should be switched to the idle queue:
$ bswitch -q night idle 0
Job <5308> is switched to queue <idle>
Job <5310> is switched to queue <idle>
Running Jobs with Platform Lava

C H A P T E R

6
Monitoring Jobs

Contents ◆ �Viewing Job Information� on page 24
◆ �Viewing Job History� on page 27
◆ �Viewing Job Output� on page 28
Running Jobs with Platform Lava 23

Viewing Job Information

24
Viewing Job Information
The bjobs command displays the status of jobs in the Lava system. For more details
on these or other bjobs options, see the bjobs command in the Platform Lava Man
Pages.
The bjobs command reports the status of Lava jobs.
When no options are specified, bjobs displays information about jobs in the PEND,
RUN, USUSP, PSUSP, and SSUSP states for the current user.
For example:
$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
3926 user1 RUN priority hostf hostc verilog Oct 22 13:51
605 user1 SSUSP idle hostq hostc Test4 Oct 17 18:07
1480 user1 PEND priority hostd generator Oct 19 18:13
7678 user1 PEND priority hostd verilog Oct 28 13:08
7679 user1 PEND priority hosta coreHunter Oct 28 13:12
7680 user1 PEND priority hostb myjob Oct 28 13:17

All jobs
bjobs -a displays the same information as bjobs and in addition displays information
about recently finished jobs (PEND, RUN, USUSP, PSUSP, SSUSP, DONE and EXIT
statuses).
All your jobs that are still in the system and jobs that have recently finished are displayed.

Running jobs
bjobs -r displays information only for running jobs (RUN state).

All jobs for all users
Run bjobs -u all to display all jobs for all users. Job information is displayed in the
following order:
1 Running jobs
2 Pending jobs in the order in which they will be scheduled
3 Jobs in high priority queues are listed before those in lower priority queues
For example:

$ bjobs -u all

JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
1004 user1 RUN short hostA hostA job0 Dec 16 09:23
1235 user3 PEND priority hostM job1 Dec 11 13:55
1234 user2 SSUSP normal hostD hostM job3 Dec 11 10:09
1250 user1 PEND short hostA job4 Dec 11 13:59

Jobs for specific users
Run bjobs -u user_name to display jobs for a specific user. For example:
$ bjobs -u user1
Running Jobs with Platform Lava

Chapter 6
Monitoring Jobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
2225 user1 USUSP normal hostA job1 Nov 16 11:55
2226 user1 PSUSP normal hostA job2 Nov 16 12:30
Detailed job information

bjobs -l with a job ID displays all the information about a job, including:
◆ Submission parameters
◆ Execution environment
◆ Resource usage
For example:

$ bjobs -l 7678
Job Id <7678>, User <user1>, Status <PEND>, Queue <priority>, Command <verilog>
Mon Oct 28 13:08:11: Submitted from host <hostD>,CWD <$HOME>,
Requested Resources <type==any && swp>35>;
PENDING REASONS:
Queue’s resource requirements not satisfied:3 hosts;
Unable to reach slave lsbatch server: 1 host;
Not enough job slots: 1 host;

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 - 4.0 - - - - - -
loadStop - 1.5 2.5 - 8.0 - - - - - -

Pending jobs and reasons
bjobs -p displays information for pending jobs (PEND state) and their reasons. There
can be more than one reason why the job is pending.
For example:

$ bjobs -p
JOBID USER STAT QUEUE FROM_HOST JOB_NAME SUBMIT_TIME
7678 user1 PEND priority hostD verilog Oct 28 13:08
Queue’s resource requirements not satisfied:3 hosts;
Unable to reach slave lsbatch server: 1 host;
Not enough job slots: 1 host;

The pending reasons also mention the number of hosts for each condition.
You can view reasons why a job is pending or in suspension for all users by combining
the -p and -u all options.

Pending jobs and reasons with host names
To get specific host names along with pending reasons, use the -p and -l options with
the bjobs command.
For example:

$ bjobs -lp
Job Id <7678>, User <user1>, Project <default>, Status <PEND>, Queue <priority>
, Command <verilog>
Mon Oct 28 13:08:11: Submitted from host <hostD>,CWD <$HOME>, Requested
Resources <type==any && swp>35>;
Running Jobs with Platform Lava 25

Viewing Job Information

26
PENDING REASONS:
Queue’s resource requirements not satisfied: hostb, hostk, hostv;
Unable to reach slave lsbatch server: hostH;
Not enough job slots: hostF;

SCHEDULING PARAMETERS:
r15s r1m r15m ut pg io ls it tmp swp mem

loadSched - 0.7 1.0 - 4.0 - - - - - -
loadStop - 1.5 2.5 - 8.0 - - - - - -

Suspended jobs and reasons
bjobs -s displays information for suspended jobs (PSUSP, SSUSP, and USUSP, status)
and their reasons. For example:

$ bjobs -s
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
605 user1 SSUSP idle hosta hostc Test4 Oct 17 18:07
The host load exceeded the following threshold(s):
Paging rate: pg;
Idle time: it;
Running Jobs with Platform Lava

Chapter 6
Monitoring Jobs
Viewing Job History
Sometimes you want to know what has happened to your job since it was submitted. The
bhist command displays a summary of the pending, suspended, and running time of
jobs for the user who invoked the command. Use bhist -u all to display a summary
for all users in the cluster.
For more details on bhist options, see the bhist command in the Platform Lava Man
Pages.

bhist does not display information about the compute hosts.

Detailed job history
The -l option of bhist displays the time information and a complete history of
scheduling events for each job.

$ bhist -l 1531
JobId <1531>, User <user1>, Project <default>, Command< example200>
Fri Dec 27 13:04:14: Submitted from host <hostA> to Queue <priority>,
CWD <$HOME>, Specified Hosts <hostD>;
Fri Dec 27 13:04:19: Starting (Pid 8920);
Fri Dec 27 13:04:20: Running with execution home </home/user1>, Execution CWD
</home/user1>, Execution Pid <8920>;
Fri Dec 27 13:05:49: Suspended by the user or administrator;
Fri Dec 27 13:05:56: Suspended: Waiting for re-scheduling after being resumed
by user;
Fri Dec 27 13:05:57: Running;
Fri Dec 27 13:07:52: Done successfully. The CPU time used is 28.3 seconds.

Summary of time in seconds spent in various states by Sat Dec 27 13:07:52 1997
PEND PSUSP RUN USUSP SSUSP UNKWN TOTAL
5 0 205 7 1 0 218

History of jobs not listed in active event log
Lava periodically backs up and trims the job history log. By default, bhist only displays
job history from the current event log file. You can use bhist -n num_logfiles to
display the history for jobs that completed some time ago and are no longer listed in the
active event log.

bhist -n num_logfiles
The -n num_logfiles option tells the bhist command to search through the
specified number of log files instead of only searching the current log file.
Log files are searched in reverse time order. For example, the command bhist -n 3
searches the current event log file and then the two most recent backup files.

Examples
bhist -n 1 searches the current event log file lsb.events
bhist -n 2 searches lsb.events and lsb.events.1
bhist -n 3 searches lsb.events, lsb.events.1, lsb.events.2
bhist -n 0 searches all event log files in LSB_SHAREDIR (For a description of

LSB_SHAREDIR, see Inside Platform Lava.)
Running Jobs with Platform Lava 27

Viewing Job Output

28
Viewing Job Output
The output from a job is normally not available until the job is finished. However, Lava
provides the bpeek command for you to look at the output the job has produced so far.
By default, bpeek shows the output from the most recently submitted job. You can also
select the job by queue or execution host, or specify the job ID or job name on the
command line.
For more details on bpeek options, see the bpeek command in the Platform Lava Man
Pages.

Output of a
running job

Only the job owner can use bpeek to see job output. The bpeek command will not
work on a job running under a different user account.
To save time, you can use this command to check if your job is behaving as you expected
and kill the job if it is running away or producing unusable results.
For example:
$ bpeek 1234
<< output from stdout >>
Starting phase 1
Phase 1 done
Calculating new parameters
...
Running Jobs with Platform Lava

Index
Symbols
! (NOT) operator

job dependencies 11
&& (AND) operator

job dependencies 11
|| (OR) operator

job dependencies 11

A
AND operator (&&)

job dependencies 11

B
batch jobs

killing 18
pre- and post-execution commands 14
signalling 18

bhist
viewing job history 27
viewing jobs not listed in active event log 27

bjobs
viewing status of jobs 24

bkill
forcing job removal 18
killing a job 18

bpeek
viewing job output 28

brun command
forcing a job to run 21

bsub
submitting a job

description 6

C
commands

job starters 16
post-execution. See post-execution commands
pre-execution. See pre-execution commands

D
dependency conditions

relational operators 12
dependency conditions. See job dependency conditions
dependency expressions

multiple conditions 11
done job dependency condition 12
DONE job state

post-execution commands 15

E
ended job dependency condition 12

execution
forcing for jobs 21

exit dependency condition
relational operators 12

exit job dependency condition 12
EXIT job state

pre- and post-execution commands 15
external

job dependency condition 12

F
forcing job execution 21

H
history

viewing 27
hosts

specifying on job submission 7
viewing pending and suspend reasons 25

I
interactive jobs

specifying shell 7

J
job dependencies

logical operators 11
job dependency conditions

description 11
done 12
ended 12
exit 12
external 12
job name 12
post_done 12, 15
post_err 13, 15
post-processing 15
specifying 11
specifying job ID 12
started 13

job ladders. See batch jobs, pre-execution commands
job slot limits

for parallel jobs 9
job starters

command-level 16
queue-level

description 16
job states

DONE
post-execution commands 15

EXIT
Running Jobs with Platform Lava 29

30

Index
pre- and post-execution commands 15
POST_DONE 15
POST_ERR 15
post-execution 15

job-level
pre-execution commands

description 14
jobs

checking output 28
forcing execution 21
killing 18
signalling 18
specifying resource requirements 8
specifying shell for interactive 7
submitting

a script 6
batch interactive 9
description 6
specifying host preference 7
to a specific queue 9
to run under a particular shell 7
with resource requirements 8
with start/end time 9

switching queues 22
viewing

by user 24
history 27
pending and suspend reasons 25
status of 24

L
logical operators

job dependencies 11
logs

viewing jobs not listed in active event log 27

M
multiple conditions

dependency expressions 11

N
NOT operator (!)

job dependencies 11

O
operators

logical in job dependencies 11
relational

exit dependency condition 12
OR operator (||)

job dependencies 11

P
parallel jobs

allocating processors 8
job slot limits 9

pending reasons 25
post_done job dependency condition 12, 15
POST_DONE post-execution job state 15
post_err job dependency condition 13, 15
POST_ERR post-execution job state 15
post-execution

job dependency conditions 15
job states 15

post-execution commands
overview 14

pre-execution commands
job-level 14
overview 14

PSUSP job state
description 18

R
relational operators

exit dependency condition 12
resource requirements

specifying at job submission 8

S
script

submitting 6
shells

specifying for interactive jobs 7
signals

configuring SIGSTOP 18
SIGSTOP signal

configuring 18
start time

specifying at job submission 9
started job dependency condition 13

T
termination time

specifying at job submission 9

U
users

viewing jobs submitted by 24
Running Jobs with Platform Lava

	Running Jobs with Platform Lava™
	Contents
	Running Jobs
	Submitting Jobs
	Submitting a job
	Submitting a script
	Submitting interactive jobs
	Submitting a job to run under a particular shell
	Submitting a job to specific hosts
	Specifying resource requirements for a job
	Specifying resource usage limits for a job
	Running Parallel Jobs
	Job submission examples

	Modifying jobs
	Job Dependency Scheduling
	Specifying a job dependency
	Dependency conditions
	done
	ended
	exit
	Job ID or job name
	post_done
	post_err
	started

	Pre-Execution and Post-Execution Commands
	Pre-execution commands
	Post-execution commands
	Submitting a job with a pre-execution command
	Post-execution job states

	Job Starters
	Two ways to run job starters
	Pre-execution commands are not job starters
	Examples

	Controlling Jobs
	Removing, Suspending, and Resuming Jobs
	Killing a job
	Forcing removal of a job
	Suspending a job
	Resuming a job

	Requeuing and Rerunning Jobs
	Requeuing a job
	Submitting a rerunnable job

	Forcing Jobs to Run
	Moving Jobs
	Moving a job to the bottom of a queue
	Moving a job to the top of a queue
	Switching jobs from one queue to another

	Monitoring Jobs
	Viewing Job Information
	All jobs
	Running jobs
	All jobs for all users
	Jobs for specific users
	Pending jobs and reasons
	Pending jobs and reasons with host names
	Suspended jobs and reasons

	Viewing Job History
	Detailed job history
	History of jobs not listed in active event log

	Viewing Job Output

	Index

