MAIN SYNTHETICAL METHODS FOR THE PREPARATION OF HETARENES

- 1. Ring Synthesis Strategy
 - 1.1. Hydrolytic disconnection
 - 1.2. Redox disconnection
 - 1.3. The mains precursors
 - 1.3.1. Precursors as nucleophiles
 - 1.3.2. Precursors as electrophiles
 - 1.3.3. Precursors as both electrophiles and nucleophiles
- 2. Substituent modification
- 3. Nomenclature: I.U.P.A.C., general rules

References:

- 1. Alan R. Katritzky, A. F. Pozharskii Handbook of Heterocyclic Chemistry 2nd Edition, Pergamon 2000
- 2. Alan R. Katritzky Short Course in Heterocyclic Chemistry for Ph. D. Students, University of Florida 1996/1997
- 3. David T. Davis *Chimie des Hétérocycles Aromatiques* De Boeck Université 1997, Oxford University Press 1992
- 4. René Milcent Chimie Organique Hétérocyclique EDP Sciences 2003, www.edpsciences.org
- **5.** Jonathan Clayden, Nick Greeves, Stuart Warren, Peter Wothers *Organic Chemistry*, De Boeck Diffusion s.a., **2003**, Oxford University Press **2001**, www.deboeck.com

Modifications (improvements, additions, corrections, up to dates etc.) are subjected to no notice.

MAIN SYNTHETICAL METHODS FOR THE PREPARATION OF HETARENES

<u>**Definition**</u>: the term *hetarenes* designes all heterocyclic compounds possessing aromatic character according to Hückel rule.

- 1. Ring Synthesis Strategy: the following three factors increase the importance of the ring synthesis
- a) **Fused** Ring vs. **Mono** cyclic
- b) Five vs. Six memebered Ring

(M

Ii it is easier to synthesise a second ring onto a first one than to synthesise a monocyclic compound.

W W

The **more heteroatoms** one has in the **ring**, the **more methods** of synthesis they are.

M M M

Substitution reactions tend to be easier on the whole when one has fewer heteroatoms in the ring.

Baldwin's Rules for 3 to 7 Membered Ring Closure

J. E. Baldwin J. Chem. Soc., Chem. Commun. 1976, 734

Exo-Tet: From 3 to 7 membered rings FAVOURED

Exo-Trig: From 3 to 7 membered rings
FAVOURED

Exo-Dig: From 3 to 4 membered rings

DISFAVOURED

Exo-Dig: From 5 to 7 membered rings

Endo-Tet: From 5 to 6 membered rings
FAVOURED

Endo-Trig: From 3 to 5 membered rings

DISFAVOURED

Endo-Trig: From 6 to 7 membered rings
FAVOURED

Endo-Dig: From 3 to 7 membered rings
FAVOURED

- i) all the above rules have **empirical support** only.
- ii) **disfavoured** does not mean **impossible** but **more difficult** to realise.
- iii) the **basic support** of the above rules is **stereochemical** (bond lenghts and bond angles).
- iv) a lot of cases (**before** and **after 1976** are in **substantial accord** with these rules).

D. E. Bergmann, *Chem. Rev.* **1953**, *53*, 309-353 L. Lázár, F. Fülöp, *Eur. J. Org. Chem.* **2003**, 3025-3042

Examples: *exo*-cyclisations according to stereoelectronic requirements in the transition state

6-exo-tet cyclisation (Intramolecular SN₂) F A V O U R E D Stereoelectronically 6-exo-trig cyclisation (Intramolecular RA) FAVOURED Stereoelectronically 5-exo-dig cyclisation (Intramolecular RA) FAVOURED Stereoelectronically

$$H_2N$$
 $\stackrel{1}{\longrightarrow}$
 $\stackrel{2}{\longrightarrow}$
 $\stackrel{N}{\longrightarrow}$
 $\stackrel{N}{\longrightarrow}$
 $\stackrel{N}{\longrightarrow}$

aziridine (three membered)

five membered (tetrahydrofuran-2-one)

3-exo-tet cyclisation (Intramolecular SN₂) F A V O U R E D Stereoelectronically 5-exo-trig cyclisation (Intramolecular SN₂) F A V O U R E D Stereoelectronically

Generalisation:

$$\begin{array}{ccc} & & & & \\ & & & & \\ lone & & & \\ pair & & empty \\ (donor) & & (acceptor) \end{array}$$

 $\frac{\text{n-}\textit{exo-tet}}{k = 0 - 4}$ F A V O U R E D Stereoelectronically

 $\frac{\textbf{n-}\textit{exo-}\textbf{trig}}{\textbf{k} = \textbf{0} - \textbf{4}}$ F A V O U R E D Stereoelectronically

exo-dig cyclisations are favoured for five to
seven membered rings

Examples: endo-cyclisations according to stereoelectronic requirements in the transition state

NOTE: only 6- and 7-endo-tet cyclisation are favoured all 3 – 7-endo-dig cyclisations are favoured almost all 3 – 7-endo-tet cyclisations are less favoured

Plausible but...

This is the real:

A 6-endo-trig cyclisation: favoured, occuring in 89 % yield

trans stereochemistry with respect to cyclanone ring

A 5-endo-dig cyclisation: favoured

1.1. Hydrolytic disconnection

- hydrolytic disconnections of the double bonds are very useful since most of the ring closures to afford heterocyclic systems are simple condensation

$$R^{1}$$
 R^{2}
 $O + H_{2}N-R^{3}$
 $O + H_{2}N-R^{$

Example 1:

originates from...

R1

$$R^1$$
 R^2
 R^2
 $Precursors$
 R^1
 R^2
 R^2
 R^2
 R^2
 R^2

Example 2:

EWG: Electro(no) Withdrawing Group CO, COOR, CN, etc.

Example 3:

$$R \xrightarrow{r}_{N} \qquad \Longrightarrow \qquad R \xrightarrow{O \qquad NH_2} \quad precursor: \quad good \ option \ !!$$

heterocyclic compound seen as a cyclic imine

$$\mathbf{R} \xrightarrow{\mathbf{N}} \mathbf{R} \xrightarrow{\mathbf{N}} \mathbf{R$$

heterocyclic compound seen as a cyclic amine

Example 4:

Imine or enamine? It doesn't matter...

$$\begin{array}{c} H \\ sp^2 \\ R \\ H \\ (masked) \\ enamine \end{array} \longrightarrow \begin{array}{c} H \\ R \\ OH \\ NH_2 \end{array} \longrightarrow \begin{array}{c} H \\ H \\ R \\ O \end{array} \longrightarrow \begin{array}{c} H \\$$

Example 5:

Retrosynthesis of pyrroles seen as hydrolytic disconnection:

Example 6: the importance of the formal charges

To be kept in mind:

- 1. If a hydrolytic disconnection appears suitable, the best pair nucleophile-electrophile sould be considered
- 2. All cyclisations (or cyclocondensations) involve classic tautomerism: keto-enolic, imino-enamine, etc.
- 3. During cyclocondensation (or retrosynthetic hydrolytic disconnection) <u>no global redox process</u>, involving <u>the whole molecule</u> occurs.

1.2. Redox disconnection

-this methodology provides information about the general strategy to be used to access the target compound: is there any redox step?

Example 1:

- a **five membered** hetarene:

Obs: the structure of the target compound (bond connection and aromaticity) is automatically issued by preserving the formal charges of each of the involved (hetero)atoms: **no redox step in the synthesis**

Example 2:

- a six membered hetarene

redox
disconnection
$$H_{3}C$$

$$N$$

$$CH_{3}$$

$$H_{3}C$$

$$CH_{3}$$

$$H_{3}C$$

$$CH_{3}$$

$$R_{3}C$$

$$R_{4}C$$

$$R_{3}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{4}C$$

$$R_{5}C$$

$$R_{5$$

is the above disconnection useful for a chemist? Why?

- a) Because it provides rapidly the type of precursors
- b) Because it provides rapidly the most convenient precursors.
- c) Because it infers that if, **for reason of availability**, a **redox step is revealed** (*e.g. reduction*) by the **redox disconnection**, in the **synthesis** of the target molecule **a redox step must be accomplished**: *e.g. oxidation*.

The direct synthesis:

1.3. The main precursors

 $\underline{\textbf{1.3.1. Precursors as Nucleophiles}}$: this is the traditional route to bring heteroatoms (N, S, O) in the target compound

Example 1: b r i n g i n g **one heteroatom** in the target compound:

Example 2: b r i n g i n g **two heteroatoms** in the target compound:

Example 3: b r i n g i n g three atoms in the target compound:

Example 4: b r i n g i n g three, four and five atoms in the target compound: benzoderivatives

1.3.2. Precursors as Electrophiles:

Example 1: bringing one atom:

Example 2: bringing two atoms:

Example 3: bringing three atoms:

Example 4: bringing four atoms:

Note: electrophilic fragments usually do not bring heteroatoms in the target compound

1.3.3. Precursors as both Electrophiles and Nucleophiles:

Example 1: bringing two atoms:

Example 2: bringing three atoms, see Example 1

$$R^3$$
 $\delta^ R^2$
 NH_2
as Nu:-
an α -aminoketone

Example 3: acid chlorides as good electrophiles to generate good nucleophiles.

The target compound:

$$\begin{array}{c|c}
\mathbf{R}^{1} & \mathbf{O} \\
\mathbf{R}^{1} & \mathbf{O}_{1} & \mathbf{R}^{1} \neq \mathbf{R}^{2} \neq \mathbf{H} \\
& \mathbf{3}^{N} = & \mathbf{R}^{2}
\end{array}$$

Retrosynthetic analysis:

Solution of the problem:

Note: obsolete cyclisation of α -aminoacids as double protected N-, COO- form (oxazoline)

2. Substituent modification

- the below **three main** types of substituent modification are of general interest
- i) nucleophilic displacement:

ii) electrophilic displacement:

iii) electrophilic displacement via metallation:

$$\begin{array}{c|c} \hline \pi \\ \hline + R-M^n \\ \hline - RH \end{array} \longrightarrow \begin{array}{c|c} \hline \pi \\ \hline X \\ \hline M^n \end{array} \longrightarrow \begin{array}{c|c} \hline \pi \\ \hline X \\ \hline \end{array} \longrightarrow \begin{array}{c|c} M^n : \text{LiI, MgII etc.} \\ \hline \end{array}$$

3. Nomenclature: IUPAC general rules

- important **trivial names** are given at the beginning of each chapter: e.g. pyridine instead of azabenzene
- the **type of heteroatom** present in the ring is indicated by **the** below **prefixes**, in **decreasing order of citation** (nomenclature as <u>a</u>):

$O ox_{\underline{a}} > S thi_{\underline{a}} > Se selen_{\underline{a}} > N az_{\underline{a}} > P phosph_{\underline{a}} > As ars_{\underline{a}} > Si sil_{\underline{a}} > B bor_{\underline{a}}$ etc.

Note: the final **a** is however elided before a vowel e.g. **azaole** \rightarrow **azole**

- two or more identical heteroatoms are indicated by dioxa, triaza, etc.
- If different, the prefixes should be combined according to the above order: e.g. thia-aza-ole \rightarrow thiazole; e.g. oxa-diaza-ole \rightarrow oxadiazole; e.g. oxa-thia-ane \rightarrow oxathiane.
- **numbering of the positions starts at an oxygen, sulphur or nitrogen** (in decreasing order of preference) and **continues** in such way that the **heteroatoms** are assigned **the lowest possible numbers.**
- other things being equal, **numbering starts** at a **substituted** rather than at **a multiply bonded nitrogen** atom.

1-methyl-1,3-diazole 3-methyl-1,3-diazole **1-methylimidazole** 3-methylimidazole

MAXIMUM UNSATURATION is defined as THE MAXIMUM POSSIBLE NON CUMULATIVE DOUBLE BONDS BY CONSIDERING:

O- two valencies

S – two valencies

N – three valencies

The Hantzsch-Widman Nomenclature for Heterocyclic Compounds

Rings with Nitrogen											
Ring Size	Maximum Unsaturation		One Double Bond		Saturated						
3	Eng. -irine Rom. -irină	$ \begin{array}{c cccc} 3 & 2 & 3 & 2 \\ N & N^{1} & H^{1} \\ 1-azirine & 2-azirine \end{array} $	-	-	Eng. -iridine Rom. -iridină	$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
4	Eng. -ete	$ \begin{array}{c c} 3 & 2 \\ 4 & N_1 \end{array} $	Eng. -etine	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eng. -etidine	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
	Rom. -etă	azete	Rom. -etină	1-azetine 2-azetine $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Rom. -etidină	azetidine 1,2-oxazetidine					
				2H-1,2-oxazetine 4H-1,2-oxazetine							
5	Eng. -ole	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Eng. -oline	$5\sqrt[4]{N^3}$	Eng. -olidine	$ \begin{array}{c} 4 \\ -N \\ 5 \end{array} $					
	Rom. -ol	N ₁ 1,3- diaz <i>ole</i> imidazole N ₁ 1,3- oxaz <i>ole</i>	Rom. -olină	Δ^2 -thiaz $oline$	Rom. -olidină	O ₁ 1,3-oxazolidine					
6	Eng. -ine	$\frac{4}{6}$ $\frac{1}{2}$	-	$ \begin{array}{c c} & 4 \\ & & \\$	prefix <i>per</i>	lature is made by using the <i>hydro</i> (<i>total hydrogenated</i>) precedes the name of the					
	Rom. -ină	N 1 1,3-diaz <i>ine</i> pyrimidine		N 1 4,5- dihydropyrimidine		ding non saturated structure 5 NH					
7	Eng. -epine	$ \begin{array}{c c} \hline & 5 \\ \hline & 6 \\ \hline & 3 \end{array} $	-		_ ne	6 1 2 H erhydro-1,3-diazine					
	Rom. -epină	7 0_1 2 $1,4$ -oxazepine			Ρ	, 6 2,5 (102011)					
8	Eng. -ocine	3 5 6 N 7	-	-							
	Rom. -ocină	$ \begin{array}{ccc} & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ & & $									
9	Eng. -onine	6 5 7 4	-	-	_						
	Rom. onină	$ \begin{array}{c c} 8 & & \\ 9 & 1 & \\ N & 2 \end{array} $									
		1 <i>H-</i> azonine									

The Hantzsch-Widman Nomenclature for Heterocyclic Compounds

Rings without Nitrogen											
Ring Size	Maximum Unsaturation		One Do	ouble Bond	Saturated						
3	Eng. -irene	$3 \bigcirc 2$ $3 \bigcirc 2$ S	-	-	Eng. -irane	$3 \bigcirc 2$ $3 \bigcirc 2$ S S					
	<i>Rom</i> . irenă	ox <i>irene</i> thi <i>irene</i>			Rom. -iran	oxirane thiirane					
4	Eng. -ete Rom. -etă	$ \begin{array}{cccc} 3 & 4 & 3 & \mathbf{S}^{2} \\ 2 & \mathbf{O}_{1} & 4 & \mathbf{O}_{1} \end{array} $ oxete 1,2-oxathiete	Eng. -etene Rom. -etenă	-	Engetane Rometan	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					
5	Eng. -ole	$\frac{4}{5}$ $\frac{3}{2}$ $\frac{4}{5}$ $\frac{3}{2}$ $\frac{3}{2}$	Eng. -olene	$\frac{4}{5}$ $\frac{3}{2}$ $\frac{4}{5}$ $\frac{3}{2}$ $\frac{3}{2}$	Eng. -olane	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					
	Rom. -ol	ox <i>ole</i> thi <i>ole</i> furane thiophene	Romolen	Δ^2 -oxolene Δ^3 -thiolene	Rom. -olan	1,3-diox <i>olane</i> thi <i>olane</i>					
6	Eng. -in	5 3	-		Eng. -ane	6 4					
	Rom. -ină	6 S 1 2 H			Rom. -an	$ \begin{array}{c} 1 \\ 0 \\ 2 \end{array} $ 1,3-dioxane					
7	Eng. -epin	thiin $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-		Eng. -epane	5 4 6 3 O					
	Rom. epină	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Rom. -epan	7 S_1 thie pane-3-one					
8	Eng. -ocin	5 4 5 4	-		Eng. -ocane	5 4 3					
	Rom. ocină	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			Rom. -ocan	$ \begin{array}{c} 7 \\ 8 \\ 1 \end{array} $ thiocane					
9	Eng. -onin	6 5 7 4	-		Eng. -onane	6 5					
	Rom. onină	8 0 2			Rom. -onan	$8 \left\langle \begin{array}{c} 3 \\ 9 \\ 1 \end{array} \right\rangle$					
		ox <i>onin</i>				ox <i>onane</i>					

- indicated hydrogen: H in compounds possessing maximum unsaturation, if the double bonds can be arranged in more than one way, their positions are defined by indicating the nitrogen or carbon atoms which are not multiply bonded and consequently carry an "extra" hydrogen atom: 1H, 2H,
- in partially saturated compounds, the position of the hydrogen atoms can be indicated by the prefixes dihydro if convenient suffix is not available
- in partially saturated compounds, the position of the double bond can be indicated by the symbol $\Delta^{a,b}$ which indicates that the double bond is between the atoms numbered "a" and "b"

Example 1:

thiane (I.U.P.A.C.)

3,4-dihydro-2*H*-thiin 5,6-dihydro-2*H*-thiin 4H-thiin 1*H*-thiin 2H-thiin 2,3-dihydro-4*H*-thiin 3,4,5,6-tetrahydro-2H-thiin no suffix available according to IUPAC with suffix according to IUPAC: in

Note: the number of the indicated hydrogen is the lowest possible

Example 3:

2*H*,6*H*-1,2,5-dithiazine
$$\rightarrow$$
 max. unsaturation possible is 1 double bond: suffix in e \rightarrow order of citation: S, S > N \rightarrow supplementary hydrogen at N-2 and C-6: 2*H*,6*H*

4*H*,6*H*-1,2,5-dithiazine \rightarrow max. unsaturation possible is 1 double bond: suffix in e \rightarrow order of citation: S, S > N \rightarrow supplementary hydrogen at C-4 and C-6: 4*H*,6*H*

Example 4:

