Model based methods and tools for process systems engineering

Rafiqul Gani

PSE for SPEED*, Department of Chemical & Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark rag@kt.dtu.dk

*Sustainable Product-Process Engineering, Evaluation & Design

SPEED What is Process Systems Engineering?

Takamatsu, Sargent, PSE-series (1982), PSE-China(1979)

Sargent (1988): Process systems engineering is all about the development of systematic techniques for process modelling, design and control.....

Some formulate their problem, or some useful simplification of it, in precise mathematical terms, then seek to exploit the mathematical structure to obtain an effective algorithm, while others seek insight on the problem structure from physical intuition.

SPEED What is Process Systems Engineering?

Takamatsu, Sargent, PSE-series (1982), PSE-China(1979)

PSE: Use of a systematic approach to problem solving! Also, Use of computer aided and systematic approach to solving process engineering problems!

Scope & Significance of PSE/CAPE is potentially very large and depends on the application range of the developed solution approaches.

SPEED Basic products (disciplines-themes) of PSE

Numerical analysis

Mathematical Programming

Systems and Control Theory

Computer Science

=> Modelling & Simulation

=> Optimization

=> Process Control

=> Advanced Info./Computing

Management Science

=> Operations/Business

Math Programming & Control Theory "competitive" advantage

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

DTI

SPEED Framework for problem solving in PSE

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Scope of the basic products of PSE

Numerical analysis => Simulation => Behavior of process-product

Mathematical Programming => Optimization => Synthesis/design

Systems and Control Theory => Process Control => Manufacture

Computer Science => Advanced Info./Computing => Efficient

problem solvingManagement Science => Operations/Business=> Supply chain

What is necessary is models of various types, forms and application range

Models have an important role in PSE

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Example: Problem formulation & solution

Property models

$$Log P_i = A_i + [B_i/(C_i + T)]$$

Process models

SPEED Example: Problem formulation & solution

Fobj = min { $C^{T}y + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_e + S_i + S_s + H_c + H_p$ }

Process-product model

 $\mathsf{P} = \mathsf{P}(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta})$

Process-product

 $\mathbf{0} = \mathbf{h}_1(\underline{\mathbf{x}}, \underline{\mathbf{y}})$

Equipment-material

 $0 \geq g_1(\underline{x}, \, \underline{u}, \, \underline{d})$

 $\mathbf{0} \geq \mathbf{g}_2(\underline{\mathbf{x}}, \underline{\mathbf{y}})$

Flowhseet-chemical alternatives

 $\mathbf{B} \ \underline{\mathbf{x}} + \mathbf{C}^{\mathsf{T}} \underline{\mathbf{y}} \geq \mathbf{D}$

Problems: LP, NLP, MILP, MINLP, process simulation,

Solution strategies: Direct, Decomposition based

<u>x</u>: real-process variables; <u>y</u> integer-decision variables

SPEED Managing the complexity through PSE

Problem defined by

- System boundary
- Models (of different types, sources,)
- Data (from different sources,)
- Multi-objectives & multi-disciplines

10

PSE = systematic solution of problems by efficient management of the complexity

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Most used methods & tools in PSE

- Process simulators (mainly commercial)
- Solvers (GAMS, Matlab, ...)
- Specialized software
 - Control
 - Planning & scheduling
 - Fault diagnosis
 - •

Managing the complexity: Framework

• Define the problem

CAPEC

- Analyze the problem
- Determine an appropriate solution strategy
- Solve & verify
 - Defines application range
 - Defines solution approach

Manage the complexity: Tools integration

CAPEC

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

13

14

DTU

The Role of Models & Experiments

- Approaches
 - Integrated modeling, experiments and synthesis
 - Ability to find predictiveinnovative solutions

Computer Aided Modelling

Goal: Development of a computer-aided modelling framework

Computer-aided modelling of increasing importance to face current and future challenges product-process engineering.

- -> Prediction and optimization of product process behaviour
 - -> Reduce number of resource-demanding experiments
 - -> Deliver truly innovative solutions
 - -> Improved understanding of domain system

CAPEC

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

Idea of computer aided modelling system

Model domain

- Derive the model equations (model generation)
 - Translate & Analyze model equations (model translation)
 - Solve model equations & generate model "object" (also, create library for use with a simulator or for on-line solution)

A computer aided system assists the user in performing the above tasks

Examples of Model construction & solution

Define Boundary → Describe System → Identify Building Block

Allows model construction, generation & reuse

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

Examples of Process Models

Accuracy (verification)

Predictive power (design)

Particulated system with uniform gradient in one direction

Property Models

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

CAPEC

Can be transferred into balance equations for other extensive quantities by symbolic manipulation

Describe modelling needs through a model derivation taxonomy – start from the left for each class of model equation and identify the end-point on the right. Retrieve the equations from a library for each end-point

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

Computer-Aided Modelling: Pharmacokinetics

Pharmacokinetic modeling of drug distribution in rats

1. Retrieval and analysis of different candidate models

Phase I: Modelling objective and system information

Phase II.B: Multi-scale model construction

- Discrimination between model candidates, estimation of identifiable model parameters
 Phase III: Model identification/discrimination
 Phase IV: Model evaluation/validation
- 3. Strategy for scale-up (to human)

-> Highlight modelling methodology (different work-flows) and software tool.

A Mosat, E Lueshen, M. Heitzig, C. Hall, A A Linninger, G. Sin, R. Gani, 2013, "First principles pharmacokinetic modeling – A quantitative study on Cycloporin", Computers & Chemical Engineering, 54, 97-110; see also another paper in CACE 2014 =

SPEED Current & future challenges

The key chemical products

Problems we can solve very well! SPEED

Rafigul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Current & future challenges: Processes

How to find innovative solutions?

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED How to tackle the enlarged problem size?

Chemical and bio-based industry faces enormous challenges to achieve and/or respond to:

Processes need to be:

Sustainable (Economically feasible; Reduced waste; Utility efficient; Environmentally acceptable); Safe; Operable;

Framework & Tool for Computer Aided Flowsheet Generation

ProCAFD - Computer Aided Flowshee Problem Definition Mixture Analysis	Process-group selection	Generation of flowsheets	Ranking	Design & Analysis	Rigorous simulation		
Add Compound	nocess-group selection	,	reamining	Add Inlets & Outle	ts]
CAS no:	Suggested compound	ds:					
Chemname:						<u>, î î</u>	
Formula:							
	Add Compound	Click to select compoun	d	Add Inlet			Add Outlet
Selected Compounds				Property		Value	
	<u>l</u>	ProCAFD		*			
	~ Reaction I	Data					
	Reac	tion data					
View Parameters				Save			
					(Next step (M	fixture Analysis)

A Computer-Aided Tool to:

✤Generate all feasible process flow-sheets

(To generate novel/innovative solutions).

✤Quick & efficient evaluation of alternatives.

Design & Analysis of Alternatives

✤That requires minimal computation resources and expert knowledge.

Framework & Tool for Computer Aided Flowsheet Generation

(iA)(rAB/pABCD)<1<2[<(iB)](gmemABC/D)[(oD)](A/BC)1(B/C)2(oC)

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Molecular Products

The key chemical products

	Commodities	Molecules	Microstructures
<u>Key</u>	Cost	Speed	Function
<u>Basis</u>	Unit Ops	Chemistry	Microstructure
<u>Risk</u>	Feedstock	Discovery	Science
	Skills Requ	ired? Adop	ted from Cussler (2011)

SPEED Products with Special Microstructures

The key chemical products

	Commodities	Molecules	Microstructures
<u>Key</u>	Cost	Speed	Function
<u>Basis</u>	Unit Ops	Chemistry	Microstructure
<u>Risk</u>	Feedstock	Discovery	Science
	Skills Requ	ired?	ted from Cussler (2011)

SPEED Examples of chemical products

Positive contribution to the modern society

Survival of the modern society depends on the products from ChE

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Formulate & solve these problems?

Jet-fuel blend

Liquid formulations & emulsions

Scientifically specified needs

Needs defined by consumer reactions

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

Is there a need for a product simulator?

The chemical product simulator

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

U

The Grand Product Design Model?

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

The Mathematical Problem & Solution?

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

SPEED Issues & questions for the future

- Should we look for solutions that are not so simulator specific?
 - Are simulators able to solve the problems we are interested in?
- Should we develop new model-based methods & tools?
 - Should we let the vendor companies develop the tools?
- How to find the innovative solutions we need?
 - Can this be done with the current tools?
- We (PSE-academia) need to take back the leadership role

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

Need to address the grand challenges – energy, water, food & environment

Need to look and develop beyond the current methods and tools

Need efficient management of the complexity is the key

Need to develop model based systems that provide truly innovative & new solutions

Future Research Challenges in PSE

How do we go from here ...

Azapagic 2013

Rafiqul Gani, Seminar-2, Babes-Bolyai University, Cluj-Napoca, 5 November 2015

DTU

Future Research Challenges in PSE

..... Somewhere here?

Azapagic 2013

DTU

