Control of the gold nanoparticle generation process with applications in lithography

PHD Student: Gherman Ana Maria

Scientific Supervisor: Prof. Dr. Eng. Paul Serban Agachi

Introduction

- Gold nanoparticles (AuNP) applications:
 - Electronic devices
 - Biosensing
 - Detection
 - Catalysis
 - → Depend on the AuNP → size shape
- The size and shape depend on the process parameters (irradiation power, irradiation time, polymer concentration).

Objectives and approach

- Mathematical modeling of the heat and mass transfer that occur in the gold nanoparticle generation process:
 - Study the light excitation process
 - Study the heat transfer process
 - Study the mass transfer process
 - Mathematical model
- Study the influence of the process parameters upon the nanoparticle dimension
- Improvement of the hardware infrastructure performance
- Predictive control system of the lithography process quality

/ [Taali Nama	Duration	044	Finish	
	ID	Task Name	Duration	Start	Finish	2015 2016 2017
	1	The control of the gold nanoparticle	738 days	Fri 10/10/14	Tue 8/8/17	
		generation process with applications in	U			
		lithog raphy				
	2	Study the photochemical process	314 days	Fri 10/10/14	Wed 1 2/2 3/15	
	3	Study the light excitation process	44 days	Fri 10/10/14	Wed 12/10/14	10/10 12/10
	4	Study the heat transfer process	57 days	Mon 1 2/1 5/14	Tue 3/3/15	12/15
	5	Study the mass transfer process	45 days	Wed 3/4/15	Tue 5/5/15	3/4 5/5
	6	Influence of the process parameters	89 days	Wed 5/6/15	Mon 9/7/15	5/69/7
		upon the nanoparticle dimension				
	7	Develop the mathematical model	75 days	Thu 9/10/15	Wed 12/23/15	9/10 12/23
	8	Improvement of the hardware	152 days	Mon 1/4/16	Tue 8/2/16	1/4 8/2
		infrastructure performance				
	9	Predictive control of the lithography	262 days	Mon 8/8/16	Tue 8/8/17	8/8
		process quality				

Current state

Study the light excitation process

Study the heat transfer process

Project proposal in the young team competition: "Fabrication of new nano/microstructured materials using laser radiation and applications".

Light excitation process

- Advantages clean process
 AuNP fabricated in various mediums
 fast formation of the AuNP
- Photochemical synthesis mechanisms:
 - Direct photoreduction
 - Photosensitized photoreduction
- 2 step fabrication of AuNP:
 - Nucleation
 - Coalescence of atoms leads to the formation of clusters

Masanori S., Mamoru F., Tetsuro M., "Light as a construction tool of metal nanoparticles: Synthesis and mechanism", Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2009, 33–56;

Mallick K, Witcomb M., Scurrell M., "Polymer-stabilized colloidal gold: a convenient method for the synthesis of nanoparticles by a UV-irradiation approach", Applied Physics. A 80, 2005, 395–398;

Heat transfer process

- Heat can be seen as a broadened incoherent statistical set of vibrations
- Heat transport ensured by carriers (elementary particles: electrons, phonons, photons)
- AuNP exposed to an incident light in the visible spectral domain, gain energy by absorbing photons through electron transitions.
- The main relaxation process electron-phonon scattering.
- The particle temperature balance between:
 - Gain of energy from the electron-phonon collisions
 - Heat release towards the host medium
- The AuNP temperature also depends on:
 - Nanoparticle radius
 - Metal concentration
 - C. Louis, O. Pluchery, "Gold nanoparticles for physics, chemistry and biology", Imperial college press, 2012,75-80;
 - Govorov A. and Richardson H., "Generating heat with metal nanoparticles", Nano Today, Volume2, Issue 1, 2007, 30–38;

Near Future

Write an article based on the master thesis: "Neural network modeling of the parameterized gold nanoparticles generation through photo-induced process".

Mathematical modeling of the heat generated at interaction of the laser radiation with the chemical system, respectively the gold nanoparticles.