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ABSTRACT. A modified Wiener number was proposed by Graovaé and Pisanski.
It is based on the full automorphism group of a graph. In this paper, we compute
the difference between these topological indices for some polyhedral graphs.
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INTRODUCTION

A topological index is a numerical value associated to a chemical
constitution purporting for correlation of chemical structure with various physical
properties, chemical reactivity or biological activity. In an exact phrase, if >
denotes the class of all finite graphs then a topological index is a function
Top from ) into real numbers with the property that Top(/37) = Top(/2), if the
graphs 77 and 7> are isomorphic. Obviously, the number of vertices and the
number of edges may be considered as topological indices. Wiener index is
the first reported distance based topological index defined as half sum of the
distances between all the pairs of vertices in a molecular graph. Topological
indices are abundantly used in QSPR and QSAR researches. So far, a
variety of topological indices have been described. The Wiener number is
one of them. It is the first reported distance based topological index. The
Wiener number is defined as the half sum of distances between all the pairs
of vertices in a molecular graph [1]. Randi¢ defined the hyper—Wiener index
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of acyclic graphs [2], and then Klein et al. [3] generalized Randi¢’s definition
for all connected graphs, as a generalization of the Wiener index. It is defined
as:

ww () :1/2W(F)+1/2z{w} (d(x, ). (1)

We refer to [4-6] for mathematical properties and chemical meaning
of this topological index.

An automorphism of the graph 7"is a bijection a on it, which preserves
the edge set E i.e., if e=uv is an edge, then a(e)= a(u)a(v) is an edge of E.
Here the image of vertex u is denoted by a(u). We denote the set of all
automorphisms of 7"by Aut(/) and this set, under the composition of mappings,
forms a group. This group acts transitively on the set of vertices, if for any
pair of vertices u,v € V , there is an automorphism a such that a(u)=v.

By means of automorphism group, Graova¢ and Pisanski proposed
the modified Wiener index [7,8], as follows:

1 V()|
WD) =31 6] Zorevir) L A0 ) @
In[9], a modlfled hyper—Wiener index was defined as:
)|

Theorem 1 [7]. Let 7"be a graph with automorphism group G = Aut(/)
and the vertex set V(7). Let V4, Vo, ..., Vi be all orbits of action of G on V(1).
Then

W(r)= @)

Corollary 2. Let /"be a vertex-transitive graph, then W (") =W (I").

It is easy to see that the Wiener index is equal to the modified Wiener
index if 7”is vertex-transitive and the modified Wiener index is zero if and only
if Aut(/) is trivial. For a given graph 7, the difference between Wiener and
modified Wiener indices is [10,11]:

o(r)=w(r)-w(r). ()

Similarly, the difference between hyper—Wiener and modified hyper—Wiener
indices can be written as:

55(I") = WW ()= WW (). (6)
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Example 3 [8]. Wiener index of Circumcoronenes with 5n? vertices,
for n>2 is:

1 5 3
W(C5,72 )= 6(124n -35n° +n),
and the modified-Wiener index of circumcoronenes for n>2 is:

A 1 3,9
W(Cy,2) =5 (n” ~10).

Then, we have
_n 4 2
5(C5n2)—€(14n —-15n° +1).

—
/Hr"wwf/ )i

Figure 1. Circumcoronene; n=9.

Example 4 [8]. Wiener index of circumcoronenes with 6n? vertices,
for n>1,is:

_n 4 _ 2
W(C6n2)—§(164n 30n“ +1)

and the modified-Wiener index of circumcoronenes for n >1 is:

A

w(C,,.)=30n° - 3n3.

Hence, we can deduce that

_n 4 2
8(C6n2)—g(14n 15n° +1).
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Figure 2. Circumcoronene; n=8.

RESULTS AND DISCUSSION

A planar graph is the one that can be drawn on the plane in such a
way that its edges intersect only at their endpoints. Let I be a planar graph
and n, m, f are respectively the number of vertices, edges and faces. Then
by Euler theorem, we have

n-m+f=2 (7)

A general polyhedron is the one that satisfies the Euler relation. If a
cubic polyhedron has no face of size greater than 6, then it has a positive
curvature. In [12], Ghorbani introduced a new class of fullerene graphs with
pentagons and heptagons. In this paper, we also introduce a class of polyhedral
graphs with squares, pentagons and hexagons (Figures 3;4).

Figure 3. The Case of n=4in Cien. Figure 4. The Case of n =5 in Cien.

264



POLYHEDRAL GRAPHS UNDER AUTOMORPHISM GROUPS

This class of polyhedral graphs has exactly 16n vertices, where n is
an integer greater than or equal with 4, herein denoted by Cis:. By Euler’s
formula, we can conclude that this graph has exactly 2 squares, 8 pentagons
and 8(n-1) hexagons, for n>4 .

Theorem 5. For n>4, the automorphism group of graph Cien is
isomorphic to

Dy n|2

AUt(C16n)E{D8 n*2

Proof. At first we compute the order of G = Aut(C1en) of symmetries of
the polyhedral graph Cisn, for n=4 depicted in Figure 5; the automorphism
group of Cien for N 25 and n|2 can be computed similarly. If a denotes the
rotation of Cie, for 45° and @ is a reflection over the central vertical line,

then G><a,B>~. On the other hand, |<a,B~=16 where ' = =1,
Lo =o' This leads us to conclude that G =< a, 8 >= Ds.

61 64

N\ /

60 55 54 57
\ 1
43 36
1

44

35 30 37
56m .’ Noom20™ 212 \
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6‘42 45==53

I
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RN
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-9 I7 /5\
15‘! Ng— ~~¢ 2’3
/
AN L T Y
33 32 39
\ 1 /
48 40 47
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59 50 51 58

/ \

62 63

46.52

Figure 5. Labeling of cubic polyhedral graph Cyg,, for n=4.

265



MODJTABA GHORBANI, MARDJAN HAKIMI-NEZHAAD

Similarly, for n | 2, G = D, and the proof is completed.

78 79
\77 0o IS“ [
\
57 50 sz\
/ . 1_33’48\ 51
/ 28 40
67\61 7 =20 7
19 1 ~3) 58,73
AN - 6 \24 47

5 / ‘38
43 \ 67>,
\ 30mm,t 2
66/60 4 21\25 /63\70
N\ NG L4553
55 4437
64 54 59
Vi \ 4
75 65 71 7
/
76 80

Figure 6. Labeling of cubic polyhedral graph C; gn for n=5.

Now, we prove that the Wiener index of this class of polyhedral
graphs forn=9is:
256 3 8384
= n° +

W(Cigp) = —7432. 8
(Cron) =5 0%+ ®)

The Wiener index of this class of polyhedral graphs is computed for
the first time in this paper. We can also apply our method to compute the
other classes of polyhedral graphs. In [13], a method to obtain a polyhedral
graphs from a zig — zag or armchair nanotubes, is described. Here, by
continuing this method, we can construct an infinite class of polyhedral
graphs and then compute its Wiener number. The symbol Tzm,n] means a
zig—zag nanotube with m rows and n columns of hexagons (see Figure 7).
Combine a nanotube T[8,n] with two copies of cap B (Figure 8) as shown in
Figure 9; the resulted graph is a polyhedral graph with 16n vertices, for n = 9.
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Figure 7. 2D graph of a zig—zag nanotube TAm,n], form=8; n=6.

A block matrix can be written in terms of smaller matrices. In the
following theorem, the Wiener index of the G = T,[8,n] nanotube for n =2 9 is
computed, see Figure 9.

N

4 N\

(LA T
. /

Figure 8. Cap B.

e
=

Figure 9. Polyhedral graph C1enconstructed by combining two copies of cap B,
and the zig-zag nanotube TZ[8,n].
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Theorem 6. Forn=9,
11072

W (T, 8.n]) —512n% + n—11392, )

Proof. According to Figure 9, there are n + 1 rows of vertices. We
suppose the vertices of the last row are U = {u1, u, ..., us}. To compute
the Wiener index of this nanotube we use a recursive sequence method.
Let f, be the two times of Wiener index of G = T8, n]. A straightforward
computation yields the recurrence

2W(G)=t, = Y d(xy)+ Y d(xy)+2 > d(xy)

x,yeU x,yeV\U xeU,yeV\U
(10)
=1024+t, 4+2 Y d(x,y).
xeU,yeV\U

To compute the summation erVer\ud(X’y) by using the

symmetry of graph we have

D d(x,y)=8(d(uy)+d(u)), (11)
xeU,yeV\U

where d(uq)= Zd(u1,y)and d(u,) defines the similarly (see Figure 10).
yeV\U

By computing these values, one can see that:

d(u;)=16n% -72n+184, n=>9,
d(uy)=16n? —88n+288, n=>10.

T
3

(12)

d
N~/

Figure 10. 2-D graph of the nanotube T8,2].
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This implies that t,«1 = 1024+t,+8(d(uy)+d(u,)). The solution of
this recurrence is

11072

W(G)=¥n3—512n2+ n-11392. (13)
Theorem 7. Forn =9,
W(Cyep) = 256 3, 8384 | 7430, (14)

3
Proof. From Figure 9, one can see that the distance matrix of

polyhedral graph C,,, can be written as a block matrix as follows:

Suppose {v1, Vo, ..., v}, {u1, ..., usy and {wy, ..., w;} be the set of
vertices of the first cap, vertices of T8,n] and vertices of the second cap,
respectively. The distance matrix D can be broken to the following form:

V. B W
D=B U B
w B V

where V, B and W are distances between vertices of the first cap with the
vertices of TZ[8,n] and vertices of the second cap. The matrix U is the distance
matrix of vertices {us, ..., Us}. In other words, U is the distance matrix of T/8,n].
This matrix was computed in Theorem 6. It is easy to see that the Wiener
index is equal to the half-sum of distances of the distance matrix D between all

pairs of vertices. For any polyhedral graph C;g,the matrix V is constant, as

shown in Figure 11. The summation of entries of matrix V is 3880. Obviously,
the distance matrices B, U and W are dependant to the number of rows in the
nanotube T78,n]. In other words, if w, and w,.1 be the Wiener indices of the

polyhedral graphs Cyg, and C16(n-1)» respectively, then similar to the proof of
the Theorem 1, for n = 10, we have

Wi — Wo = 25920, W11 — W10 = 31040, Wi — W11 = 36672, Wiz — W12 = 42816
Again, a straightforward computation yields the recurrence
W, —w,_4 = 256n2 — 256n + 2880. (15)

and the solution of this recurrence is

256 3 8384
3 n° +

W(Cygp) = n-7432. (16)

This completes the proof.
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Corollary 8. For polyhedral graph Cien, we have

6—;n3 —256n2 + 67304 n-7432, n=4kk>3
0(C1gn) = , (17)
6—;n3 _o56n2 4+ 9896 7432, otherwise

%n3 —864n2 +@n—60524, 2|n, n=4k,

55(Cygp) = %n3—864n2+43432n—60524,, 2|n, n=2(2k-1). (18)
3;_2’73 -896n2 + 43;44 n-60524, 2|n

Proof. At first by a direct computation, we have
W(Cg4)=9984 W(Cq)=17520,W(Cyg) =27864,W(C,4,) = 41436,W(C,,5) = 58624,
WW(Cg,) = 34100, WW(Cgy) = 65976, WW(Cqg) = 114684, WW/(Cy4,) = 185496,
WW(C,05) =283916, WW(C,44)=417748.

By applying the methods of [6], we have:

W(Cig,) = 2563, 8384 7432 n>9
WW(Csg,) = 128 n* + 128 nd + 322 n?+ 52276 n-60524, n=>10.

On the other hand, by using Theorem 5, we have:
W/(Cas) = 9760, W(Cag) = 16480, W (Cqg) = 25824, W (C41,) = 37912, W (Cy5) = 53568,

WW (Cgy) = 36128, WW/(Cgp) = 67280, WW (Cgq) = 113568,

andfornz=9, k>3 we have:

64n° +256n2 +560n, n =4k

W(Cign)=1 . , N
64n° +256n“ +496n, otherwise
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(20)

2(2k —1).

2| n, n=4k,
2|n

’
)

n?+3048n, 2|n, n

3
2944
3
3040 2\ 3444n

2944 2 . 35900
3
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128 4 303 4
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128 4 303 4

3
128 4 303 4
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A

WW(Cyep)
The proof can be drawn from (19) and (20).

Il
>
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Figure 11. Matrix V(C16,n)
In this paper, a new family of cubic polyhedral graphs was introduced

and then its modified Wiener index was computed. Also, their Wiener index
was computed and, finally, the difference between two topological indices

CONCLUSION
was derived.
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