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ON BIPARTITE EDGE FRUSTRATION OF CARBON AND 
BORON NANOTUBES 
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ABSTRACT. The measure of bipartivity is one of the important topological and 
structural property which describes the chemical stability of underlying chemical 
structures. Bipartite edge frustration is one of the topological descriptors which 
calculate measure of bipartivity of a chemical structure. Carbon hexagonal 
nanotubes, boron triangular nanotubes and boron  -nanotubes are important 
nanostructures, which have been studied extensively by both of the theoretical 
and computational chemists. In this article, we consider carbon hexagonal 
nanotubes, boron triangular nanotubes and boron  -nanotubes for the study 
of bipartite edge frustration. 
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INTRODUCTION 

Nanotechnology works with structures of size in the range 1 to 100 
nanometers. Nanotechnology creates many new materials and devices with 
a variety of applications in medicine, electronics, and computer. The most 
significant nano structures are carbon nanotubes, boron triangular nanotubes 
and boron  -nanotubes (Figure 1).  
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The recent discovery of pure boron triangular nanotubes challenges 
the monopoly of carbon. The first boron triangular nanotubes were created in 
2004 and consist of triangular sheets [1,2]. Figure 1b shows a boron triangular 
sheet.  

Let G=(V,E) be a simple graph, a graph without multiple edges and 
loops. A subgraph H of G is a graph whose set of vertices and set of edges 
are all subsets of G. A spanning subgraph is a subgraph that contains all the 
vertices of the original graph. 

       (a)                             (b)                                 (c) 

Figure 1. Carbon hexagonal nanotube (a); Boron triangular nanotube (b); 
Boron  -nanotube (c). 

The graph G is called bipartite if the vertex set V can be partitioned 
into two disjoint subsets V1 and V2 such that all edges of G have one 
endpoint in V1 and the other in V2. Bipartite edge frustration of a graph G 
denoted by )(G , is the minimum number of edges that need to be deleted 
to obtain a bipartite spanning subgraph. 

It is easy to see that )(G  is a topological index and G is bipartite if 

and only if )(G  = 0. Thus )(G  is a measure of bipartivity. It is well-known 
that a graph G is bipartite if and only if it does not have odd cycles. Holme 
et al. introduced the edge frustration as a measure in the context of complex 
network [3]. 

Fajtlowicz claimed that the chemical stability of fullerenes is related to 
the minimum number of vertices/edges that need to be deleted to make a 
fullerene graph bipartite [4,5]. However, Schmalz et al. [6] observed that the 
isolated pentagon fullerenes (IPR fullerenes) have the best stability. Doslic [7] 
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presented some computational results to confirm this relationship. So it is 
natural to ask about relationship between the degree of non-bipartivity and 
stability of chemical structures such as nanotubes. 

Throughout this paper all the considered graphs are finite and simple. 
Our notation is standard and taken mainly from [8,9]. We encourage the reader 
to consult papers by Doslic [7,10,11] for background material and more 
information on the problem. Also, the reader is referred to papers [12-15] for 
some background material as well as basic computational methods on 
mathematical properties of nanomaterials and chemical networks. 

RESULTS AND DISCUSSON 

Bipartite edge frustration is probably related to the chemical stability 
of nanostructures, like fullerenes or nanotubes.  

Ashrafi et al. [16] computed the bipartite edge frustration of various 
families of carbon nanotubes. Doslic et al. [2,10] studied the bipartite edge 
frustration of fullerenes. In this paper, the bipartite edge frustration of carbon 
and boron nanotubes is studied. 

Carbon Polyhex Nanotubes 

There are different shapes of carbon polyhes nanotubes CNT, such 
as armchair, chiral and zigzag [2] based on the rolling of 2D carbon polyhex 
sheet. A CNT of order mn  is a tube obtained from a carbon polyhexl sheet 
of n  rows and m  columns by merging the vertices of last column with the 
respective vertices of first column (Figure 2). 

A zig-zag CNT is a nanotube of order mn  in which carbon atoms 
are arranged in zig-zag pattern (Figure 2a). Similarly, an armchair carbon 
hexagonal nanotube is a carbon nanotube in which carbon atoms are 
arranged in an armchair pattern (Figure 2b). It can easily be seen that a 
carbon hexagonal nanotube has only odd number of rows and even number 
of columns.  

A complete regular hexagon with six vertices is called full-hexagon. 
An incomplete hexagon with four vertices is called a half-hexagon. The first 
row (last row) of an armchair CNT of order mn  has m/2 number of half-
hexagons. For the sake of simplicity we denote zig-zag carbon hexagonal 
nanotube with CNT1 and armchair carbon hexagonal nanotube with CNT2. 
In a CNT of order mn , there are 2)/2( nm full hexagons and m  half 
hexagons. The number of vertices and edges in such a CNT are nm  and 

2)/2(3 nm  respectively.  
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In the following, we prove that both of these carbon hexagonal 
nanotubes have zero bipartite edge frustration.  

 Theorem 2.1.1. Let CNT1 and CNT2 be the zig-zag and armchair 
carbon hexagonal nanotubes respectively, then  

0=)(=)( 21 CNTCNT   

 Proof. A graph G  is bipartite if and only if 0=)(G , thus, it suffices 
to prove them bipartite. Figure 2 shows a 2-coloring of CNT1, in which bold 
vertices can be put in one partition and rest of them in the other partition. 
This clearly shows that CNT1 is bipartite. Similarly, the bipartivity is proven for 
CNT2.  

Figure 2. 2D models of: Zig-zag CNT (a); Armchair CNT (b). 

 Boron Triangular Nanotubes 

A boron triangular nanotube, of order mn , is drawn from a 
hexagonal nanotube of the same order by adding a new vertex at the center 
of each hexagon and join it with the original points of the hexagon. Figure 3 
shows the way of construction of a boron triangular nanotube. 
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Figure 3. Boron triangular nanotube of order ),( mn . 

We denote the boron triangular nanotube of order mn  as 
],[ mnBNTt , in which n  is the number of rows and m  is the number of 

columns. Since, there are 2)/2( nm  full hexagons and m  half hexagons, 

the number of vertices is /23nm  while that of edges is 2)/2(33 nm .  

Figure 4. The dotted edges which need to be deleted 
from a full and a half hexagons. 

Now we compute bipartite edge frustration of boron triangular nanotube.  

 Theorem 1. Let ],[ mnBNTt  be the boron triangular nanotube with 

defining parameters n  and m , then  

2)(3
2

=]),[( nmmnBNTt
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  Proof. Consider G be a boron triangular nanotube. There exist no  

2-coloring of G which results in 0>)(G . To prove that it is exactly 2)(3
2

nm
,

we need to prove both of the inequalities i.e. 2)(3
2

)(  nmG  and

2)(3
2

)(  nmG . Since a CNT has zero bipartite edge frustration, the

problem is with the newly added edges. If one deletes three newly added 
alternating edges from a full hexagon and two newly added alternating edges 
from half hexagon that makes both full and half hexagons bipartite spanning 
subgraphs. Figure 4 exhibits the edges which need to be deleted from a full 
and a half hexagon. Since, there are 2)/2( nm  full hexagons and m  half 

hexagons in a boron triangular nanotube, this implies that 2)(3
2

)(  nmG .

On the other hand,one can easily be seen that there is no less number of 
edges to make the edges deleted subgraph a bipartite spanning subgraph. 

This turns out that 2)(3
2

)(  nmG thus proving the theorem.

 Boron  -Nanotubes 

A boron  -nanotube of order mn  is obtained from a hexagonal 
nanotube of order mn  by deleting the central point of some hexagons of a 
triangular nanotube. We denote an ),( mn -boron  -nanotube as ],[ mnBNT  

(Figure 5).  

 Lemma 2. In an ),( mn -dimensional boron  -nanotube:  

• There are 1)
3

(
2

nm
emptyl full hexagons.

• There are )
2
3

3
2(

2
nm

 filled full hexagons.

• There are
3

4nm
 vertices, when n  is a multiple of 3 .  

• There are
2

4)(7 nm
 edges, when n  is a multiple of 3 .  
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Figure 5. A 2D model of boron  -nanotube of order ),( mn . 

Let present the bipartite edge frustration of boron  -nanotube, 

],[ mnBNT .  

 Theorem 3. Let ],[ mnBNT  be the ),( mn -dimensional boron 

 -nanotube, then  

1)(2
2

=]),[( nmmnBNT

 Proof. Let G be the ),( mn -dimensional boron  -nanotube. Since we 

do not find any 2-coloring of G , it results that 0>)(G . We prove both of 

the inequalities 1)(2
2

)(  nmG  and 1)(2
2

)(  nmG , to prove it is

exactly 1)(2
2

nm
. If we delete three newly added alternative edges from a

full hexagon and two newly added alternative edges from half hexagon it 
results in both full and half hexagons bipartite spanning subgraphs. Figure 4 
exhibits the edges which need to be deleted from a full and a half hexagon. 

Since, there are 1)
3

(
2

nm
 empty full hexagons and )

2
3

3
2(

2
nm

 filled 

hexagons in an ),( mn -dimensional boron  -nanotube, this implies that 
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1)(2
2

)(  nmG . On the other hand, it can easily be seen that there is no

less number of edges to make its edge deleted subgraph a bipartite spanning 

subgraph. This turns out that 1)(2
2

)(  nmG , which completes the proof.

CONCLUSIONS 

Evaluating the bipartivity in chemical structures provides important 
information about their topology and eventually about chemical stability. Wile 
carbon polyhex nanotubes have zero bipartite edge frustration, the boron 
nanotubes have non-zero bipartivity. 
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