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QSAR STUDY OF PHENOTHIAZINES 

ATENA PÎRVAN MOLDOVANa,*, SARA ERSALIa, RALUCA POPb 

ABSTRACT. A QSAR study on a set of 30 phenothiazines performed within a 
hypermolecule frame, to model their logP and LD50 values, is reported. The 
initial set of molecules was split into a training set and the test set; Cluj 
topological indices and some quantum mechanical descriptors have been 
used to derive the models, which were next tested for predictability by LOO, 
external validation and similarity clustering. 
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INTRODUCTION 

Phenothiazine is an organic heterocyclic compound, of the class of 
thiazines, with the brute formula S(C6H4)2NH, of which skeleton occurs in 
various antipsychotic, antihistaminic, antiemetic, etc. drugs. Phenothiazine was 
synthesized by Bernthsen in 1883 by melting the diphenylamine with sulfur; its 
medicamentous derivatives are currently synthesized by the cyclization of 
substituted diphenylamines or diphenyl sulfides. Synthesis of methylene blue 
was reported in 1876 and is still used as antiseptic, antihelminthic drug. 

Phenothiazine antipsychotics, like chlorpromazine and prochlorperazine, 
are used to treat serious mental and emotional disorders, including schizophrenia 
and other psychotic disorders. Phenothiazine antipsychotics are classified into 
three groups, differing with respect to the substituent on nitrogen: the aliphatic 
compounds, piperidine compounds and piperazine derivatives. As antihistaminic, 
the promethazine is the most used phenothiazine. 
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Several water-soluble phenothiazines, such as methylene blue, methylene 
green, thionine, etc. can be electropolymerized, the resulted polymer inding 
industrial applications [1]. 

Quantitative structure–activity relationship (QSAR) studies, attempt 
to predict (in the light of the paradigm that relates a biological activity, or a 
physicochemical property, of a compound to its chemical structure) the activity of 
tested compounds and to suggest structural features which could enhance that 
biological activity, in the process of drug design [2-4].The concept of similarity 
is used in grouping chemical compounds according to their molecular structure, 
biological effects or physicochemical properties; it has found extensive use in 
drug discovery [4]. 

Topological indices are molecular descriptors, useful in QSAR studies; 
they are integer or real-valued numbers, derived from the connectivity and other 
topological matrices computed on the molecular graph associated to a molecule. 
Among thousands of topological indices, the Cluj indices, defined by Diudea 
[5, 6], are among the most simple and versatile ones in coding the chemical 
information of a molecular graph. Indices are calculated from the Cluj topological 
matrices, as half sum of matrix entries, by using the original TopoCluj software [7].  

The octanol–water partition coefficient (log P) describes the chemical 
lipophilic/hydrophilic characteristics. Log P is the ratio of a chemical concentration 
in the octanol phase to its concentration in the aqueous phase of a two-phase 
system at equilibrium. Log P is involved in the passive transport of a drug 
molecule through cellmembrane [3].  

This QSAR study was performed following Diudea’s algorithm [8]; it is 
based on the alignment of molecules over a hypermolecule [9] and a correlation 
weighting procedure [10, 11] coupled with a predictive validation of the model 
descriptors within similarity clusters [12] performed for each molecule in the test 
set. The algorithm can be extended with other powerful statistical tools (e.g. PLS 
or PCA) but we limited here to the more common multi linear regression in 
achieving the best prediction of a chosen property, like logP or LD50. 

COMPUTATIONAL 

The structures have been optimized at Hartree-Fock HF (6-31g(d,p)) 
level of theory, in gas phase, by Gaussian 09 [13]. Topological indices have been 
computed by TOPOCLUJ software [7]. The modeled properties: logP and LD50, 
along with some of the molecular descriptors, like Charges, D3D, Detour, Distance, 
IE[CfMax], IP[CfMin], IP[CfMax], E HOMO (a.u.), HL gap (eV), Chemical potential 
(eV), Hardness (eV), Elecrophilicity (eV), are listed in Tables 1 and 2, respectively. 
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RESULTS AND DISCUSSION 

Data set 

A hypermolecule (Figure 1) was built up by superposing all the 30 molecules 
under study. The hypermolecule is considered to mimic the investigated statistical 
hyperspace [9] and works like a biological receptor, over which the ligands are 
aligned. According to this alignment, binary vectors were constructed, with 1 when 
for a given position of the hypermolecule exists an atom in the current molecule, 
and zero, otherwise. In the above binary vectors, the values 1 are next replaced 
by mass fragments. Table 1 lists the phenothiazines of the data set, with the 
properties to be modeled: logP and LD50 (intraperitoneal, mouse). 

Table 1. List of studied phenothiazines with their name, CID and 
properties logP and LD50. 

No. CID logP LD50 mg/kg Name Canonical Smiles

1 2726 5.41 14 chlorpromazine CN(C)CCCN1C2=CC=CC=C2SC3=C1C=C(C=C3)Cl

2 2801 5.19 150 clomipramine CN(C)CCCN1C2=CC=CC=C2CCC3=C1C=C(C=C3)Cl

3 2995 4.90 85 desipramine CNCCCN1C2=CC=CC=C2CCC3=CC=CC=C31

4 3089 3.34 190 fonazine/dimetothiazine CC(CN1C2=CC=CC=C2SC3=C1C=C(C=C3)S(=O)(=O)N(C)C)N(C)C

5 3781 3.66 62 isothipendyl CC(CN1C2=CC=CC=C2SC3=C1N=CC=C3)N(C)C

6 4066 4.70 54 mequitazine C1CN2CCC1C(C2)CN3C4=CC=CC=C4SC5=CC=CC=C53
7 4744 4.10 185 perazine CN1CCN(CC1)CCCN2C3=CC=CC=C3SC4=CC=CC=C42

8 4747 3.52 115 periciazine C1CN(CCC1O)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)C#N

9 4748 4.20 64 perphenazine C1CN(CCN1CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl)CCO

10 4917 4.88 120 prochlorperazine CN1CCN(CC1)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl

11 4926 4.55 140 promazine CN(C)CCCN1C2=CC=CC=C2SC3=CC=CC=C31

12 4927 4.81 124 promethazine CC(CN1C2=CC=CC=C2SC3=CC=CC=C31)N(C)C

13 5452 5.90 65 thioridazine CN1CCCCC1CCN2C3=CC=CC=C3SC4=C2C=C(C=C4)SC

14 5566 5.03 120 trifluoperazine CN1CCN(CC1)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)C(F)(F)F
15 6075 5.60 140 mepazine/pecazine CN1CCCC(C1)CN2C3=CC=CC=C3SC4=CC=CC=C42

16 6077 4.20 350 acetylpromazine CC(=O)C1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN(C)C
17 6761 4.40 80 pipamazine C1CN(CCC1C(=O)N)CCCN2C3=CC=CC=C3SC4=C2C=C(C=C4)Cl
18 10646 4.70 190 pyrathiazine C1CCN(C1)CCN2C3=CC=CC=C3SC4=CC=CC=C42
19 14670 3.40 135 prothypendyl CN(C)CCCN1C2=CC=CC=C2SC3=C1N=CC=C3

20 14677 5.23 183 methdilazine CN1CCC(C1)CN2C3=CC=CC=C3SC4=CC=CC=C42
21 16414 4.80 119 7-hidroxyclorpromazine CN(C)CCCN1C2=C(C=C(C=C2)O)SC3=C1C=C(C=C3)Cl
22 19396 3.40 185 oxomemazine CC(CN1C2=CC=CC=C2S(=O)(=O)C3=CC=CC=C31)CN(C)C
23 19675 4.21 98 piperacetazine CC(=O)C1=CC2=C(C=C1)SC3=CC=CC=C3N2CCCN4CCC(CC4)CCO
24 65535 4.90 225 diethazine CCN(CC)CCN1C2=CC=CC=C2SC3=CC=CC=C31
25 65750 5.90 90 chlorproethazine CCN(CC)CCCN1C2=CC=CC=C2SC3=C1C=C(C=C3)Cl

26 68223 4.20 115 fenethazine CN(C)CCN1C2=CC=CC=C2SC3=CC=CC=C31

27 69500 3.80 210 difazin CCN(CC)CC(=O)N1C2=CC=CC=C2SC3=CC=CC=C31
28 70413 3.90 163 opromazine CN(C)CCCN1C2=CC=CC=C2S(=O)C3=C1C=C(C=C3)Cl

29 72287 4.68 58.5 levomepromazine C[C@@H](CN1C2=CC=CC=C2SC3=C1C=C(C=C3)OC)CN(C)C

30 94280 4.96 206 dimetacrine CC1(C2=CC=CC=C2N(C3=CC=CC=C31)CCCN(C)C)C



ATENA PÎRVAN MOLDOVAN, SARA ERSALI, RALUCA POP 

308 

Figure 1. Hypermolecule comprising the features of the dataset 

Table 2. The modeled properties: logP and LD50 and some of the molecular 
descriptors computed for 30 phenothiazines 

Data reduction 

In this step, the descriptors with variance <10% and intercorrelation > 
0.80 (two descriptors highly correlated bring quite the same information on 
the molecule, one of them being sufficient) were discarded. 

Mol logP LD50 mg/kg Charges D3D Detour Distance IE[CfMax] IP[CfMin] IP[CjMax] E HOMO (a.u.) HL gap (eV) Chem.pot (eV) Hardness (eV) E.phil (eV) SD(logP) SD(LD50)
1 5.20 ~ -0.105 959 2450 896 201 4630 1260 -0.297 11.040 -2.560 5.520 0.590 -54.235 ~
2 5.20 150 -0.379 1040 2860 995 212 5030 1350 -0.302 11.340 -2.550 5.670 0.570 -53.820 -9000.05
3 4.90 85 0.060 800 2330 759 144 3770 958 -0.295 11.430 -2.450 5.720 0.520 -54.097 -9033.07
4 3.80 190 -0.280 1550 3810 1540 366 8090 2070 -0.308 10.680 -3.030 5.320 0.860 -55.200 -8928.76
5 3.50 62 -0.668 740 2150 744 156 3730 974 -0.297 11.040 -2.550 5.520 0.590 -55.528 -9040.66
6 4.60 54 -0.162 1130 3320 1090 219 8580 1670 -0.291 11.436 -2.203 5.718 0.424 -54.476 -9059.29
7 4.10 185 -0.341 1370 3500 1390 320 9070 2440 -0.291 11.170 -2.340 5.580 0.490 -54.779 -8932.61
8 3.50 115 -0.034 1610 4200 1720 398 11300 2980 -0.304 10.616 -2.947 5.308 0.818 -55.463 -9015.74
9 4.20 64 -0.065 1910 4560 2000 486 13500 3690 -0.294 11.284 -2.346 5.642 0.488 -54.828 -9034.78
10 4.90 120 -0.098 1530 3840 1540 353 10100 2670 -0.294 11.280 -2.347 5.640 0.488 -54.208 -8976.6
11 4.50 140 -0.196 874 2200 789 178 4030 1130 -0.293 11.180 -2.380 5.590 0.510 -54.807 -8956.05
12 4.80 124 -0.267 759 2150 744 156 3730 974 -0.273 10.690 -2.090 5.350 0.410 -54.571 -9007.79
13 5.90 65 -0.334 1560 3860 1440 311 9490 2390 -0.297 10.900 -2.620 5.450 0.610 -53.196 -9048.29
14 4.70 120 0.636 2110 4940 2080 492 13700 3610 -0.304 10.950 -2.800 5.480 0.720 -54.707 -8989.26
15 5.60 140 -0.268 1070 2870 982 162 6450 1420 -0.294 11.180 -2.410 5.590 0.520 -53.606 -8973.29
16 4.30 350 -0.065 1240 2990 1150 268 6080 1630 -0.301 10.360 -3.010 5.180 0.870 -54.393 -8762.6
17 4.40 80 0.074 1870 4540 1980 474 13300 3590 -0.267 10.471 -2.013 5.235 0.387 -54.529 -9045.99
18 4.70 190 -0.275 959 2560 889 176 5340 1280 -0.286 11.700 -2.107 5.673 0.391 -54.243 -8906.66
19 3.40 135 -0.642 807 2200 789 178 4030 1130 -0.280 10.610 -2.320 5.300 0.510 -55.764 -8988.92
20 4.60 183 -0.208 833 2540 859 146 5280 1130 -0.280 10.770 -2.240 5.380 0.470 -54.455 -8930.29
21 4.80 119 -0.192 1060 2720 1020 224 5300 1420 -0.297 11.020 -2.560 5.510 0.600 -54.235 -9000.05
22 3.40 185 0.123 1140 2880 1080 255 5450 1550 -0.333 11.220 -3.460 5.610 1.070 -55.560 -8931.28
23 4.00 ~ -0.013 2250 5380 2410 595 16500 4480 -0.299 10.340 -2.960 5.170 0.850 -55.355 ~
24 4.90 225 -0.286 951 2410 894 215 4570 1330 -0.291 11.080 -2.360 5.540 0.500 -54.243 -8906.66
25 5.90 90 -0.221 1170 2980 1190 314 6280 1940 -0.297 11.030 -2.560 5.510 0.590 -53.199 -9000.05
26 4.20 115 -0.228 711 1950 658 128 3300 832 -0.287 11.350 -2.122 5.675 0.397 -54.883 -8980.16
27 3.80 210 0.033 990 2610 979 242 4950 1450 -0.304 11.300 -2.620 5.650 0.610 -55.296 -8906.66
28 3.90 163 -0.048 1020 2690 993 223 5110 1390 -0.309 10.970 -2.930 5.480 0.780 -55.299 -8947.64
29 4.80 58.5 -0.323 1150 2950 1130 268 5900 1620 -0.282 10.920 -2.220 5.460 0.450 -54.273 -9038.46
30 5.40 206 -0.536 1020 2650 973 221 4930 1380 -0.262 10.510 -1.870 5.250 0.330 -53.731 -8906.92
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Correlation weighting was performed as follows: the correlation coefficients 
of the statistically significant positions in the hypermolecule were used to multiply 
the local descriptors, thus resulting new weighted vectors ijCD . Next, these new 

descriptors are summed to give a global descriptor, i ijj
SD CD  which is a

linear combination of the local correlating descriptors for the significant positions in 
the hypermolecule (for logP model, significant positions are 1, 10, 12, 18, 19, 21, 
23, 24, 26, 27, 28, 30, 31, 32, 40, 80; for LD50 model, these are: 1, 12, 16, 18, 19, 
21, 27, 28, 31, 32, 33, 34, 37, 38, 40, 41). 

Basic equations that describe the relationships between values of 
property or biological activity of compounds and their structures were obtained: 

logP= 59.096+SDlogP (1) 
n=30; R2=0.946; s=0.165; F=488.078 

LD50=9113.289+SDLD50 (2) 
n=28; R2=0.956; s=13.964; F=566.487 
(molecules 1 and 23 were outliers) 

QSAR models (for case log P) 

The models were performed on the training set (structures 11-30) and 
the best results (in decreasing order of R2) are listed below in Tables 3 and 4. 

Table 3. The best bivariate models for logP in the training set 

Property Descriptors R2

logP SD(logP) IP[CfMax] 0.9487 
SD(logP) Detour 0.9482 
SD(logP) D3D 0.9480 
SD(logP) El.phil (eV) 0.9480 
SD(logP) IE[CfMax] 0.9479 
SD(logP) IE[CjMax] 0.9479 
SD(logP) Chem.pot.(eV) 0.9474 
SD(logP) E HOMO (a.u.) 0.9469 
SD(logP) Charges 0.9467 
SD(logP) Hardness(eV) 0.9465 

Table 4. The best trivariate models for logP in the training set  

Property Descriptors R2 
logP IP[CfMin] Chem.pot (eV) SD(logP) 0.95114

Chem.pot (eV) SD(logP) IP[CjMin] 0.95110 
IP[CjMax] Chem.pot (eV) SD(logP) 0.95109 

Chem.pot (eV) SD(logP) IP[CjMax] 0.95109 
Distance Chem.pot (eV) SD(logP) 0.95060

Chem.pot (eV) SD(logP) IE[CfMax] 0.95026 
Hardness (eV) SD(logP) Detour 0.94954 

D3D Hardness (eV) SD(logP) 0.94920
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Property Descriptors R2 
SD(logP) Detour E HOMO (a.u.) 0.94919 
Charges Chem.pot (eV) SD(logP) 0.94919

E HOMO (a.u.) SD(logP) D3D 0.94905 
E HOMO (a.u.) SD(logP) Distance 0.94904 
E HOMO (a.u.) SD(logP) Charges 0.94833 
Chem.pot (eV) SD(logP) E HOMO (a.u.) 0.94755 

I. Monovariate regression 

  logP= 57.266+0.966×SDlogP (3) 
     n=20; R2=0.946; s=0.172; F=317.17 
II. Bivariate regression

logP= 57.299+0.968×SDlogP+3.54×10-5×IP[CfMax]  (4) 
n=20; R2=0.949; s=0.173; F=157.155

III. Trivariate regression

logP= 56.341+0.948×SDlogP+1.26×10-5×IP[CfMin]+0.097×Chem.pot. (5)
n=20; R2=0.951; s=0.174; F=103.82

QSAR models (for case LD50) 

The models were performed on the training set and the best results 
(in decreasing order of R2) are listed below in Tables 5 and 6. 

I. Monovariate regression 

LD50=9444.65+1.037×SDLD50 (6) 
      n=19; R2=0.940; s=13.534; F=265.126 
II. Bivariate regression

LD50=9415.945+1.033×SDLD50-0.0266×IE[CfMax]      (7) 
      n=19; R2=0.943; s=13.607; F=131.573 

Table 5. The best bivariate models for LD50 in the training set 

Property Descriptors R2

LD50 SD(LD50) IE[CfMax] 0.9427
IE[CfMin] SD(LD50) 0.9424
IE[CjMin] SD(LD50) 0.9424
SD(LD50) IP[CfMax] 0.9422
SD(LD50) IP[CjMax] 0.9421
Distance SD(LD50) 0.9414
IP[CfMin] SD(LD50) 0.9413
IP[CjMin] SD(LD50) 0.9412

D3D SD(LD50) 0.9412
SD(LD50) Detour 0.9407
Charges SD(LD50) 0.9401

HL gap (eV) SD(LD50) 0.9398
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Property Descriptors R2

Hardness (eV) SD(LD50) 0.9398
SD(LD50) E.phil (eV) 0.9398
SD(LD50) Chem.pot (eV) 0.9398
SD(LD50) E HOMO (a.u.) 0.9397

III. Trivariate regression

LD50=9606.267+1.055×SDLD50-0.2024×IE[CfMax]+0.047×Distance (8)
n=19; R2=0.947; s=13.498; F=89.557

Table 6. The best trivariate models for LD50 in the training set

Property Descriptors R2 
LD50 Distance SD(LD50) IE[CfMax] 0.9471 

D3D SD(LD50) Detour 0.9448 
IE[CfMax] HL gap (eV) SD(LD50) 0.9432 
IE[CfMax] Hardness (eV) SD(LD50) 0.9432 
SD(LD50) E.phil (eV) IE[CfMax] 0.9429
SD(LD50) Chem.pot (eV) IE[CfMax] 0.9428 
SD(LD50) E HOMO (a.u.) IE[CfMax] 0.9427 

Chem.pot (eV) Distance SD(LD50) 0.9415 
IP[CjMin] SD(LD50) E HOMO (a.u.) 0.9412 
SD(LD50) Detour Chem.pot (eV) 0.9407 

Model validation  

(a) Leave-one-out 

The performances in leave-one-out analysis [14] related to the 
models listed as best in Tables 3-6 are shown in Tables 7 and 8 . 

Table 7. Leave-one-out analysis for the best logP models 

Descriptors Q2 R2- Q2 
1 SD(logP) 0.9378 0.0085
2 SD(logP), IP[CfMax] 0.9285 0.0208
3 SD(logP), IP[CfMin], Chem.pot. 0.9096 0.0410 

Table 8. Leave-one-out analysis for the best LD50 models 

Descriptors Q2 R2- Q2 
1 SD(LD50) 0.9306 0.0092
2 SD(LD50), IE[CfMax] 0.9251 0.0176 
3 SD(LD50), IE[CfMax], Distance 0.9188 0.0301 

(b) External Validation 

The values of logP and LD50 for the test sets (structures 1-10 for logP; 
structures 8, 11, 12, 16, 18, 20, 24, 26, 28 for LD50) of phenothiazines were 
calculated by using Eqs 5 and 8, respectively.  
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The monovariate correlations are plotted in Figures 2 and 3. 

logPexp=-0.674+1.132×logPcalc (9) 
  (n=10, R2=0.940, s=0.171, F=126.298) 

LD50exp=10.945+0.916×LD50 calc (10) 
  (n=9, R2=0.944, s=18.942, F=116.983) 

Figure 2. The plot logPexp vs. logPcalc. for the test set (external validation). 

Figure 3. The plot LD50exp vs. LD50calc. for the test set(external validation) 

From Figures 2 and 3 one can see that our models show a good 
predictive ability. 
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(c) Similarity Cluster Validation 

Validation can also be performed by using similarity clusters: each of 
the 10/9 molecules in the test set, is the leader of its own cluster, selected by 
2D similarity among the 20/19 structures of the learning set (each cluster 
comprising about 12-15 molecules). The values of logP and LD50calc were 
predicted by 10/9 new equations (the leader being left out) with the same 
descriptors as in Eqs. 5 and 8, respectively.  

The monovariate correlation for logP 

logPexp=-0.516+1.094×logPcalc-clusters (11) 
  n =10, R2=0.946, s=0.162, F=141.674 

is plotted in Figure 4. 

Figure 4. The plot logPexp vs. logPcalc (by clusters of similarity) for the test set 

The monovariate correlation for LD50 

LD50exp=10.99+0.914×LD50 calc-clusters (12) 
     n =9, R2=0.951, s=17.707, F=134.87 

is plotted in Figure 5. 
Prediction of logP(R2= 0.946), and LD50(R2= 0.951), is more accurate 

when using the similarity clusters, compared to the classical external validation 
of the model. We limited the model to three variables, keeping in mind the 
suggestions of Topliss and Costello [15]. 

y = 1.094x - 0.5165
R² = 0.9466

2.70

3.20

3.70

4.20

4.70

5.20

5.70

3 3.5 4 4.5 5 5.5

ex
pe

rim
 lo

gP

calc logP (clusters)



ATENA PÎRVAN MOLDOVAN, SARA ERSALI, RALUCA POP 

314 

Figure 5. The plot LD50 vs. LD50calc (by clusters of similarity) for the test set 

CONCLUSIONS 

A QSAR study for modeling logP and LD50 of a set of 30 phenothiazine 
derivates, downloaded from some well-known databases, is reported. The 
approach is based on correlation weighting and alignment over a hypermolecule, 
that mimics the investigated correlational space. The best models, derived on the 
learning set of phenothiazines, were validated by leave-one-out test, in the 
external test set and in a version of prediction, based on clusters of similarity. 
The models were built up around the „sum descriptor” SDi that collects the 
ligand topological informations, a linear combination of local descriptors CDij, 
weighted by correlation coefficients of fitting the ligands (i.e., molecules of the 
learning set) over the hypermolecule. The other topological, global descriptors 
were calculated by TOPOCLUJ software program. The clusters of similarity 
ensured the „congeneric state” of molecules on which the prediction of property/ 
activity is made for the molecules in the test set, thus surpassing the models 
found in the learning set and also in the test set, by external validation. 
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