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ABSTRACT. Quantitative structure-retention relationships (QSRR) approach 
was used to model chromatographic lipophilicity of sixteen proteinogenic amino 
acids using molecular descriptors computed with DRAGON and ALCHEMY 
software packages. Modeling was performed applying multiple linear regression 
(MLR) coupled with genetic algorithms (GA) methodology (MLR-GA). The most 
important descriptors, highly significant in the predictive models of amino acids 
lipophilicity (RM0), were related to atomic polarizabilities (MATS3p; Ap; H1p), 
atomic van der Waals volume (MATS3v), Sanderson electronegativity 
(RDF070e) and Randic molecular profiles (DP11; DP12) calculated with Dragon 
software. The internal statistical evaluation procedure highlighted some 
appropriate models for the chromatographic lipophilicity prediction. Moreover, 
the statistical parameters of regression in order to evaluate the relationship 
between experimental and predicted values, in case of the test set (four amino 
acids), revealed three statistically valid models (model A, E and F) that can be 
successfully used in lipophilicity prediction of amino acids. 
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INTRODUCTION 
 
 Quantitative structure-activity/property relationships (QSAR/QSPR) 
describe how the molecular structure, in terms of descriptors – lipophilic, 
electronic and steric – affects the biological activity or any other property of 
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a compound [1-3]. Similarly, a quantitative structure-retention relationship 
(QSRR) relates these descriptors to chromatographic retention [4, 5]. Finally, 
the quantitative retention-property relationships (QRPR) imply that conclusions 
concerning various properties including also a biological activity can be based 
on chromatographic experiments. Regarding the QRPR approach, it can be 
considered that the same basic molecular interactions determine the behavior 
of chemical compounds in both biological and chromatographic environments. 
As a direct consequence, the chromatographic approach has been quite 
successful applied, for example, in duplicating lipophilicity data derived by 
traditional shake-flask technique or other procedures [6-8].  
 Lipophilicity (hydrophobicity) is a fundamental molecular property 
defined as the logarithm of the octanol-water partition coefficient (logPOW), 
which practically reflects the non-ionized compound partition between two 
phases usually octanol and water [9,10]. 
 Different chromatographic methods were applied and continue to be 
used with success in order to estimate the physico-chemical characteristics 
of chemical compounds, of which lipophilicity seems to be the most important 
[11]. In many cases, this molecular parameter strongly correlates with the 
biological activity of chemicals, as well as with other important physico-chemical 
properties. Studies on the relationships between chromatographic retention and 
the structure are helpful not only for the molecular design/template synthesis of 
chemical compounds with controlled properties, but also to better understand 
the biochemical and biophysical processes. In addition, the chromatographic 
methods have significant advantages in comparison with other physico-
chemical methods because (a) they are fast and relatively simple, (b) only small 
amounts of any compound are needed, (c) the compound should not be very 
pure because it is purified during the chromatographic process, (d) the process 
is dynamic and can be very easy modeled [12-15].  
 The modeling of the lipophilicity for twenty of the proteinogenic amino 
acids investigated in this study as well as the prediction of this parameter 
with different molecular descriptors calculated using performant software as 
Alchemy and Dragon will allow a better understanding of the relationships 
between the structure and their physico-chemical and biochemical properties. 
Highly statistical significant multiple linear regression-genetic algorithms (MLR-
GA) models were successfully applied to the prediction of chromatographic 
lipophilicity (RM0) of some amino acids. 
 
 
RESULTS AND DISCUSSION 
 
 A comprehensive investigation was carried out for QSRR of twenty 
proteinogenic amino acids using MLR-GA methodology. Because the major 
goal still is to improve the predictive power of the models and the creation of a 
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’’more general’’ QSRR model, which can be applied over a wide range of 
amino acids, a data set of lipophilicity values (RM0 indices) obtained in previous 
determinations for some amino acids (Alanine-Ala, Arginine-Arg, Asparagine-
Asn, Aspartic Acid-Asp, Cysteine-Cys, Glutamic acid-Glu, Glycine-Gly, 
Histidine-His, Leucine-Leu, Lysine-Lys, Methionine-Met, Phenylalanine-Phe, 
Proline-Pro, Serine-Ser, Tyrosine-Tyr, Valine-Val) [16], was used in our 
investigations. Because at that time, the RM0 of four amino acids (Glutamine-
Gln, Isoleucine-Ile, Threonine-Thr, Tryptophan-Trp) were not been determined 
they were used here as a test set and also for the external validation of the 
obtained models. The descriptors that generated the most statistically significant 
MLR models were selected using GA methodology. The best predictive models 
for lipophilicity estimation were chosen considering the following regression 
parameters (goodness of fit): the determination coefficient (R2), Fisher function 
(F), residual sum of squares (RSS), standard error of estimate (s), and leave-
one-out cross-validation coefficient (Q2), predictive error sum of squares 
(PRESS) and standard deviation error of prediction (SDEP) obtained in the 
cross-validation process. The retained descriptors from both used software 
packages are summarized in Table 1. The models obtained using descriptors 
retained from Dragon and Alchemy with the highest predictive ability and 
related statistical parameters are shown below in Table 2. 

The statistical parameters corresponding to the all regression models 
retained with three, four, and respectively five independent variables 
(descriptors) illustrate a high to moderate statistically significant prediction 
power. Furthermore, it is easy to observe that the most powerful models contain 
four or five descriptors. The „goodness of model” is given by its robustness, 
prediction ability, and the applicability domain. The determination coefficient 
of fitting power (R2) was higher than 89% in the case of Alchemy models and 
higher than 99% in the case of Dragon models, respectively. By a careful 
examination, one may be observed that the most informative Alchemy 
descriptors were molecular polarizability (Polar) and specific polarizability 
(Sp.Pol), the sum of absolute values of the charges on the nitrogen and 
oxygen atoms in the molecule (ABSQON), and Wiener index (WienI) (Table 2). 
All these retained descriptors appeared to be important in describing the 
chromatographic lipophilicity. The molecular polarizability increases the 
lipophilicity, but the charges decrease it [17]. 

The most significant descriptors calculated with Dragon are related to 
atomic polarizability (MATS3p, Ap, H1p), atomic van der Waals volume 
(MATS3v), atomic Sanderson electronegativity (RDF070e) and Randic molecular 
profiles (DP11/12). 
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Usually, the prediction ability of a model can be better characterized 
by an internal validation assessing the correlation coefficient between the 
experimental and predicted values. To evaluate the result of a large number 
of samples over the whole measurement range, usually, the regression 
analysis is preferred. The statistical parameters to evaluate the linear 
relationship between the experimental and predicted lipophilicity parameters 
for the training set of studied amino acids revealed that the models obtained 
with Dragon’s descriptors have a good predictive capacity for RM0, Q2 > 99% 
and, in case of Alchemy’s descriptors, Q2 > 76%. 
 Although satisfactory model robustness is a necessary condition to 
have a high prediction power, the real prediction ability of the model is 
assessed with the help of the external test set never used to build the models. 
So, the validation strategies should check the reliability of the developed 
models for their possible real application on a new set of data, and confidence 
of prediction can be judged. 

In order to observe the ability of the obtained models to predict the 
lipophilicity the list of RM0 values both calculated with the model (Table 3) and 
predicted in the validation process (Table 4) has been compared with the 
experimental ones. Good correlation values were found for the training (sixteen 
amino acids) and training and test set (twenty amino acids) in the case of models 
using Dragon descriptors (Figure 1 c, d) and Alchemy descriptors (Figure 1 a, b), 
respectively. Based on the prediction criteria, the best model for lipophilicity could 
predict 99.83% of the variance in the case of Dragon descriptors and 76.37% in 
case of Alchemy descriptors. The test set used to validate models revealed that 
model C and D, although with better statistics, show a limited applicability. It may 
be also a good argument for robustness of model E that performs better 
predictability for both sets: training, and test, respectively (see Table 2). The 
model F has a better prediction for test sets. This is supported by the statistical 
parameters of regression (R2 = 99.06%, Q2 = 98.17%, F = 290, s = 0.04). 

The predictive power of the models obtained with Alchemy descriptors 
is lower comparing with Dragon models because as we mentioned above, the 
set of amino acids do not form a homologous series. This is explaining by the 
fact that the retained descriptors do not contain sufficient information to describe 
the repartition behavior of all amino acids in thin layer chromatography (TLC) 
analysis. Lower prediction capacity is observed for amino acids with aliphatic 
side chain (Ala, Leu, Met, and Val) and for basic side chain (Arg and Lys) in 
comparison with experimental data. In Table 5 (the red marked) one can be 
observed that model E have a better prediction almost for all amino acids: basic 
side chain (Arg, His, Lys), hydrophobic side chain (aromatic) (Phe, Trp, Tyr), 
polar neutral side chain (Asn, Cys), unique amino acids (Gly, Pro). The most 
important selected descriptors indicate that the following descriptors are highly 
significant in the predictive lipophilicity models developed in this study: (a) 



MODELING AND PREDICTION OF AMINO ACIDS LIPOPHYLICITY USING MULTIPLE LINEAR 
REGRESSION COUPLED WITH GENETIC ALGORITHM 

 
 

249 

molecular descriptors obtained by radial basis functions centred on different 
interatomic distances (RDF descriptors – RDF070e); (b) molecular descriptors 
calculated by summing atoms weights viewed by a different angular scattering 
function (3D-MoRSE descriptors – Mor12u); (c) molecular descriptors obtained 
as statistical indices of the atoms projected onto the 3 principal components 
obtained from weighted covariance matrices of the atomic coordinates (WHIM 
descriptors – Ap); (d) molecular descriptors calculated from the molecular 
graph by summing the products of atom weights of the terminal atoms of all 
the paths (2D correlation – MATS3p, MATS3v); (e) molecular descriptors 
derived from the distance distribution moments of the geometry matrix (RMP 
descriptors – DP11, DP12). 

 
 

Table 3. The RM0 values calculated with all MLR-GA models  
based on Alchemy and Dragon descriptors 

*data values for lipophilicity parameters (RM0) obtained on RP-18W chromatographic 
plates, according to the reference [16] 

 

Abv. *RM0 exp 

Model ID 

Alchemy Dragon 

A B C D E F G H 
Ala -1.138 -0.958 -0.981 -0.913 -0.891 -1.137 -1.093 -1.115 -1.201 
Arg -0.598 -0.741 -0.732 -0.838 -0.859 -0.589 -0.566 -0.553 -0.861 
Asn -1.187 -1.216 -1.085 -1.212 -1.218 -1.203 -1.147 -1.116 -1.144 
Asp -1.255 -1.191 -1.231 -1.272 -1.235 -1.263 -1.267 -1.304 -1.195 
Cys -0.896 -0.909 -0.919 -0.754 -0.777 -0.904 -0.909 -0.971 -0.770 
Gln - - - - - - - - - 
Glu -1.185 -1.237 -1.279 -1.130 -1.074 -1.156 -1.176 -1.109 -1.003 
Gly -1.071 -1.070 -1.122 -1.118 -1.208 -1.079 -1.085 -1.048 -1.005 
His -0.586 -0.624 -0.661 -0.778 -0.819 -0.607 -0.624 -0.567 -0.556 
Ile - - - - - - - - - 

Leu -0.472 -0.695 -0.697 -0.658 -0.567 -0.457 -0.466 -0.407 -0.507 
Lys -0.930 -0.817 -0.825 -0.668 -0.666 -0.945 -1.012 -1.009 -0.841 
Met -0.554 -0.309 -0.303 -0.541 -0.463 -0.532 -0.547 -0.607 -0.630 
Phe -0.017 -0.056 -0.089 -0.093 -0.187 -0.033 -0.037 -0.055 -0.072 
Pro -0.897 -0.911 -0.930 -0.786 -0.788 -0.895 -0.923 -0.855 -0.691 
Ser -1.214 -1.134 -1.058 -1.210 -1.246 -1.211 -1.188 -1.214 -1.301 
Thr - - - - - - - - - 
Trp - - - - - - - - - 
Tyr -0.439 -0.461 -0.409 -0.347 -0.393 -0.443 -0.389 -0.418 -0.414 
Val -0.681 -0.793 -0.800 -0.801 -0.729 -0.666 -0.691 -0.772 -0.829 
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Table 4. The predicted (in cross-validation process) RM0 values with all  
MLR-GA models based on Alchemy and Dragon descriptors 

 

*data values for lipophilicity parameters (RM0) obtained on RP-18W chromatographic 
plates, according to the reference [16] 

 
 

The predictive power of the models obtained with Alchemy descriptors 
is lower comparing with Dragon models because as we mentioned above, 
the set of amino acids do not form a homologous series. This is explaining 
by the fact that the retained descriptors do not contain sufficient information 
to describe the repartition behavior of all amino acids in thin layer 
chromatography (TLC) analysis. Lower prediction capacity is observed for 
amino acids with aliphatic side chain (Ala, Leu, Met, and Val) and for basic 
side chain (Arg and Lys) in comparison with experimental data. In Table 5 (the 
red marked) one can be observed that model E have a better prediction almost 
for all amino acids: basic side chain (Arg, His, Lys), hydrophobic side chain 
(aromatic) (Phe, Trp, Tyr), polar neutral side chain (Asn, Cys), unique amino 
acids (Gly, Pro). The most important selected descriptors indicate that the 

Abv. *RM0 exp 

Model ID 

Alchemy Dragon 

A B C D E F G H 
Ala -1.138 -0.858 -0.899 -0.822 -0.796 -1.136 -1.083 -1.110 -1.215 
Arg -0.598 -0.784 -0.773 -0.941 -0.965 -0.583 -0.540 -0.522 -0.879 
Asn -1.187 -1.262 -1.070 -1.217 -1.225 -1.207 -1.137 -1.100 -1.136 
Asp -1.255 -1.172 -1.225 -1.276 -1.231 -1.267 -1.275 -1.326 -1.179 
Cys -0.896 -0.947 -0.988 -0.731 -0.759 -0.906 -0.912 -0.980 -0.761 
Gln - -1.170 -1.040 -1.069 -1.056 -1.271 -1.310 -1.287 -1.030 
Glu -1.185 -1.259 -1.311 -1.117 -1.058 -1.145 -1.173 -1.090 -0.986 
Gly -1.071 -1.066 -1.214 -1.166 -1.278 -1.094 -1.112 -1.008 -1.178 
His -0.586 -0.635 -0.678 -0.807 -0.844 -0.619 -0.629 -0.565 -0.550 
Ile - -0.666 -0.665 -0.658 -0.567 -0.382 -0.510 -0.578 -0.690 

Leu -0.472 -0.785 -0.788 -0.742 -0.582 -0.446 -0.462 -0.378 -0.512 
Lys -0.930 -0.776 -0.787 -0.646 -0.643 -0.954 -1.045 -1.042 -0.831 
Met -0.554 -0.170 -0.162 -0.536 -0.446 -0.511 -0.540 -0.619 -0.642 
Phe -0.017 -0.090 -0.144 -0.172 -0.268 -0.044 -0.051 -0.080 -0.110 
Pro -0.897 -0.914 -0.935 -0.768 -0.771 -0.894 -0.936 -0.849 -0.664 
Ser -1.214 -1.078 -1.006 -1.209 -1.254 -1.209 -1.183 -1.214 -1.334 
Thr - -1.092 -1.008 -1.134 -1.092 -0.854 -0.978 -1.120 -0.985 
Trp - 0.262 0.152 0.071 -0.004 0.955 1.425 1.287 -0.095 
Tyr -0.439 -0.479 -0.390 -0.314 -0.380 -0.445 -0.373 -0.412 -0.408 
Val -0.681 -0.821 -0.829 -0.837 -0.736 -0.655 -0.694 -0.791 -0.839 
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following descriptors are highly significant in the predictive lipophilicity models 
developed in this study: (a) molecular descriptors obtained by radial basis 
functions centred on different interatomic distances (RDF descriptors – 
RDF070e); (b) molecular descriptors calculated by summing atoms weights 
viewed by a different angular scattering function (3D-MoRSE descriptors – 
Mor12u); (c) molecular descriptors obtained as statistical indices of the atoms 
projected onto the 3 principal components obtained from weighted covariance 
matrices of the atomic coordinates (WHIM descriptors – Ap); (d) molecular 
descriptors calculated from the molecular graph by summing the products of 
atom weights of the terminal atoms of all the paths (2D correlation – MATS3p, 
MATS3v); (e) molecular descriptors derived from the distance distribution 
moments of the geometry matrix (RMP descriptors – DP11, DP12). 

 
 

 

Figure 1. Calculated and predicted versus experimental RM0 values of amino acids 
for the training set (a, c); training and test set (b, d) for the best models developed 

using Dragon and Alchemy descriptors, respectively. 
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The most important descriptors in these models, accounting for 2D and 
3D aspects of the molecular structure, can be classified as RDF (Radial 
Distribution Function), Randic molecular profiles, WHIM and GETAWAY 
signals. The selected RDF descriptors are related to the atomic van der Waals 
volumes (v) and atomic Sanderson electronegativities (e). The GETAWAY 
descriptors are related to the atomic Sanderson electronegativities (e). Also, 
the use of WHIM descriptors and GETAWAY descriptors show that atomic 
polarizabilities (p) and atomic van der Waals volumes (v) are the most important 
properties responsible for repartition coefficient of amino acids in TLC.  
 
 
CONCLUSION 
 
 The chromatographic retention data for a set of proteinogenic amino 
acids have been modeled by a wide set of computational molecular descriptors 
using multiple linear regression and genetic algorithms methodologies. The 
best models, internally validated by leave-one-out procedure, revealed that 
only a small number of descriptors seem to be necessary in order to obtain 
statistically significant prediction models. The models derived from Dragon 
descriptors are more efficient comparing to the Alchemy descriptors. The 
descriptors selected as the best combinations correlated to the different 
lipophilicity response are not easily interpretable concerning the complex 
underlying lipophilicity mechanism. However, the most important descriptors, 
highly significant in the predictive lipophilicity models of amino acids, were 
related to the atomic polarizabilities, atomic Sanderson electronegativities and 
atomic van der Waals volumes of the molecules.  
 
 
EXPERIMENTAL SECTION 
 
Computation of the molecular descriptors 
 

There are three common methods for structure representation: whole 
molecule 1D descriptors, 2D descriptors, and 3D descriptors. 1D descriptors 
attempt to express chemical information in a simple 1D molecular code and 
are designed for compact storage of information. 2D descriptors are calculated 
from a chemical structure which is represented as a connection table or a 
molecular graph. In the graphical representation of molecular structures, 
atoms in the molecular structure are represented as vertices while bonds are 
represented as edges. 3D molecular descriptors provide molecular information 
about the 3D arrangement of structural features and general molecular 
surfaces and volumes. There are many thousands of descriptors defined in a 
comprehensive handbook [18]. 



MODELING AND PREDICTION OF AMINO ACIDS LIPOPHYLICITY USING MULTIPLE LINEAR 
REGRESSION COUPLED WITH GENETIC ALGORITHM 

 
 

253 

Dragon Plus version 5.4 (www.talete.mi.it/dragon.htm) [19] is widely 
used to calculate molecular descriptors for QSAR/QSPR/QSRR modeling. 
Generally, the Dragon calculated descriptors encoding the molecular structure 
of an analyte are categorized in 22 different types: constitutional (1D), 
molecular properties (1D), atom-centred fragments (1D), functional group 
counts (1D), charge (1D), information indices (2D), walk and path counts 
(2D), topological (2D), topological charge indices (2D), connectivity indices 
(2D), eigenvalue-based indices (2D), Burden eigenvalues (2D), 2D edge 
adjacency indices (2D), autocorrelation (2D), 2D binary fingerprints (2D), 2D 
frequency fingerprints (2D), geometrical descriptors (3D), Radial Distribution 
Function (RDF) descriptors (3D), Randic molecular profiles (3D), GETAWAY 
(Geometry, Topology and Atoms-Weighted Assembly) descriptors (3D), 3D-
MoRSE (3D Molecular Representation of Structure based on Electron 
diffraction) descriptors (3D), and WHIM (Weighted Holistic Invariant Molecular) 
descriptors (3D). For this study were used 1056 descriptors. 

The second set of descriptors related to charge dependent, 3D-
structure-dependent parameters, topological and descriptors related to atom 
properties, formal and delocalized charge and molecular surface based on 
molecular mechanics for optimizing models, were computed using Alchemy2000 
[20] (http://www.tripos.com). The descriptors used (19) are: the partition 
coefficient (ScilogP), the first-order (1 χ ) and third-order (3 χ ) connectivity 
indexes, the zero-order (0 χ V) and first-order (V χ 1) valence order connectivity 
indexes, the third-order shape index for molecule (3Ka), the Wiener (Wienl) 
index based on the graph of the molecule, the volume (Volume), the dipole 
moment (Dipole), the molecular polarizability (Polar), the specific molar 
polarizability (Sp.Pol), the largest positive/negative charges over the atoms in 
molecule, in electrons (MaxQ+/MaxQ-), the sum of absolute values of the 
charges on each atom of the molecule, in electrons (ABSQ), the sum of 
absolute values of the charges on the nitrogen and oxygen atoms in molecule, 
in electrons (ABSQON), the surface area, the ovality (Ovality) of the molecule. 
 
Chemometric methods 

 
Multiple linear regression-genetic algorithm analysis [21, 22] was 

performed using the MobyDigs v.1.0 package [23]. Genetic algorithm 
procedure [24-26] was used to select the most significant variables. Models 
predictive performance [27, 28] was described by means of statistical 
parameters related to model goodness of fit (the determination coefficient R2, 
Fisher function F, residual sum of squares RSS, standard error of estimate 
s, and predictive capability (cross-validation coefficient Q2, predictive error 
sum of squares PRESS, and standard deviation error of prediction SDEP).  
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