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ABSTRACT. A supervised fuzzy method is described and efficiently applied 
for the first time in this study. The advantages of the new approach for the 
characterization and classification of various Roman potteries on the basis 
of their mineral composition has been explored. The new classification robust 
approach allows more relevant conclusions to be drawn, finding more specific 
groups and a better characterization of Roman potteries using their degrees 
of membership to each fuzzy partition and solving in this way some 
discrepancies. The efficiency of the supervised fuzzy method was also estimated 
by the values of quality performance features obtained applying different 
fuzzy quality criteria and highly illustrative graphs. The parameters of the 
prototype (class centre) illustrate much better than, for example, arithmetic 
mean the specific characteristics of each class, and the degrees of 
membership allow a rationale comparison of the similarity and differences of 
Roman pottery samples investigated. 
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INTRODUCTION 

 
It is well known and widely accepted that data analysis (data science) 

has reached a new level when chemometric methods have been starting to 
be efficiently applied [1-5]. These methods offer the best alternative for 
graphical visualization or finding the natural existing groups and relationships 
between objects (samples, cases) and/or their characteristics (variables). 
The most commonly used methods are cluster analysis (CA), principal 
component analysis (PCA), discriminant analysis (DA), and others more or 
less sophisticated methods [6-8].  
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Cluster analysis and classification are two important tasks which 
occur daily in everyday life. The goal of cluster analysis is to find meaningful 
groups in data [9]. Generally two types of algorithm are distinguished, these 
being hierarchical and non-hierarchical or relocation (partitioning) clustering. 
Both methods require the calculation of a (dis)similarity matrix. This (dis)similarity 
which is really a measure of the proximity of the pair of objects (points) in the 
p-dimensional characteristic space, defined by the p properties measured for 
each individual, is usually expressed in terms of the Euclidean, Mahalanobis, 
Manhattan or Chebychev distance between the two points. Either the number 
of clusters to be generated can be specified in advance, or it may be optimized 
by the algorithm itself according to certain criteria. 

The problem of classification (also called discriminant analysis) involves 
classifying objects into classes when there is already information about the 
nature of the classes. This information often comes from a data set of objects 
that have already been classified by experts or by other means. Classification 
aims to determine which class new objects belong to and develops automatic 
algorithms for doing so. Typically, this involves assigning new observations 
to the class whose objects they most closely resemble in some sense [7]. 

Classification is said to be a “supervised” problem in the sense that it 
requires the supervision of experts to provide some examples of the classes. 
Clustering, in contrast, aims to divide a set of objects into groups without any 
examples of the “true” classes, and so is said to be an “unsupervised” problem 
[7].  

In classical cluster analysis and classification each object must be 
assigned to exactly one cluster or class. This is a source of ambiguity and error 
in cases of outliers or overlapping clusters and affords a loss of information. 
This kind of vagueness and uncertainty can, however, be taken into account 
by using the theory of fuzzy sets [10]. A fuzzy set or a fuzzy subset is a 
collection of ill-defined and not-distinct objects with un-sharp boundaries in 
which the transition from membership to non-membership in a subset of a 
reference set is gradual rather than abrupt. 

The theory of fuzzy set is basically a theory of graded concepts. It is 
an extreme generalization of ordinary set theory [11] and is basically 
designed to handle the concept of partial truth. A central concept of fuzzy set 
theory is that it is permissible for an element to belong partly to a fuzzy set. It 
provides an adequate conceptual framework as well as a powerful mathematical 
tool to model the real-world problems which are often obscure and indistinct 
[12-16]. 

The data arising from fuzzy systems are in general, soft, with no 
precise boundaries. Fuzziness of this type can often be used to represent 
situations in the real world better than the rigorous definitions of crisp set 
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theory [11]. Fuzzy sets can be particularly useful when dealing with imprecise 
statements, ill-defined data, incomplete observations or inexact reasoning. 
There is often fuzziness in our everyday world as, for example, varying signal 
heights in spectra from the same substance, or varying patterns in pattern 
recognition studies [12-16]. 

The goal of the present study is to define and apply a new methodology 
for Roman potteries characterization and classification, improving in this way 
the approach proposed by Mirti and al. [17]. The new classification robust 
approach used here allows more relevant conclusions to be drawn, finding 
more specific groups and a better characterization of Roman potteries using 
their degrees of membership to each fuzzy partition and solving in this way 
some discrepancies. The efficiency of the supervised fuzzy method was also 
estimated by the values of quality performance features obtained applying 
different fuzzy quality criteria [13, 18, 19] and highly illustrative graphs. 
 
 
RESULTS AND DISCUSSION 
 
 Step 1. First we started to run the data set including 16 samples 
(training set) accurately assigned to three groups (according to their stylistic 
features and results obtained using different multivariate methods applied to 
spectroscopic data) as the authors of the original study indicated [17]. The 
input and output partitions, namely the degrees of membership (DOMs), are 
shown in Table 1. The supervised fuzzy c-means (SFCM) produced 3 fuzzy 
partitions (groups), which were all represented by a prototype (a cluster 
centre with the parameters corresponding to the fuzzy robust means of the 
original spectral concentrations for 16 terra sigillata samples weighted by 
DOMs corresponding to each partition). To compare the fuzzy partitions and 
the similarity and differences of samples, we have to analyse both the 
characteristics of the prototypes corresponding to the three fuzzy partitions 
(A1–A3) obtained by applying SFCM and DOMs of samples corresponding 
to all fuzzy partitions. The results presented in Table 1 and 2 and also Figure 
1 clearly illustrate the most specific characteristics of each fuzzy partition and 
their (dis)similarity and point out the samples assigned according to their 
DOMs. 

The fuzzy partition A1, for example, has a moderate concentration of 
Al (18.25%) but the highest concentration of Fe (8.87%) and Mg (7.85%) and 
the smallest concentration of Ca (2.46%). This partition contains all the 
samples assigned by Mirti and al. [17] to the group I with very high DOMs 
within the range 0.964-0.997.  
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Table 1. The input and output partitions (DOMs) of the training set (n=16) 
 

No Symbol Site Position Input partitions Output partitions 
A1 A2 A3 A1 A2 A3 

1 
 

A2 PPS N-W 1 0 0 0.977 0.010 0.013 

2 
 

A8 PPS N-W 1 0 0 0.964 0.017 0.020 

3 
 

A8b PPS N-W 1 0 0 0.997 0.001 0.002 

4 
 

B1 PPS N or C 0 0 1 0.019 0.038 0.944 

5 
 

B4 PPS N-W 1 0 0 0.995 0.002 0.003 

6 
 

B12 PPS N-W 1 0 0 0.987 0.006 0.007 

7 
 

B13 PPS N-W 1 0 0 0.979 0.009 0.012 

8 
 

B14 PPS N-W 1 0 0 0.985 0.006 0.009 

9 
 

B15 PPS N or C 0 0 1 0.049 0.141 0.810 

10 
 

B21 PPS N or C 0 0 1 0.023 0.058 0.919 

11 
 

W2 PP G 0 1 0 0.095 0.206 0.700 

12 
 

W3 PP G 0 1 0 0.006 0.972 0.022 

13 
 

W4 PP G 0 1 0 0.010 0.955 0.035 

14 
 

W5 PP G 0 1 0 0.036 0.115 0.849 

15 
 

W6a PP G 0 1 0 0.008 0.962 0.030 

16 
 

W6b PP G 0 1 0 0.030 0.126 0.844 

PPS= Porta principalis sinistra; PP= Porta Praetoria;  
G= Gaulish production; N-W= north-western; N or C= north or central 

 
Table 2. The coordinates (fuzzy means) of the prototypes  

corresponding to different partitions (%) 
 

Partition Al2O3 Fe2O3 CaO MgO Na2O K2O TiO2 MnO 
n = 16  

A1 18.25 8.87 2.46 7.85 1.61 3.71 0.98 0.13 
A2 21.58 5.81 9.98 1.16 0.14 3.88 0.80 0.07 
A3 16.52 6.70 10.54 3.25 1.00 3.06 0.83 0.13 

n = 21  
A1 18.41 8.92 2.40 8.10 1.54 3.65 0.92 0.13 
A2 21.41 5.80 9.64 1.20 0.17 3.82 0.82 0.07 
A3 16.54 6.66 10.27 3.21 0.99 3.03 0.84 0.13 

n = 24  
A1 19.61 8.04 2.76 5.74 1.39 3.34 0.85 0.11 
A2 20.74 5.74 5.40 1.56 0.76 3.29 0.78 0.06 
A3 14.91 6.28 11.88 2.99 0.87 2.92 0.73 0.11 
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The fuzzy partition A2, with the highest concentration for Al (21.58%), 
and also a high concentration for Ca (9.98%) but with the smallest 
concentration for Fe (5.81%), Mg (1.16%) and Na (0.14%), includes only 
three samples from the group II, as it was indicated by Mirti and al. [17], 
namely W3, W4 and W6a with the following very high DOMs: 0.972, 0.955 
and 0.962. The other three samples namely W2, W5 and W6b were assigned 
to A3 with relatively high DOMs: W2 (0.700), W5 (0.849) and W6b (0.844). 

The fuzzy partition A3 includes the three samples moved from A2 and 
the three samples B1 (0.944), B15 (0.810) and B21 (0.919) assigned to 
group III by Mirti and al. [17]. This partition is characterized by the highest 
concentration of Ca (10.54%), the smallest concentration of Al (16.52%) and 
the intermediate concentration for Fe (6.70%) and Mg (3.25%).   

 
Figure 1. 3-D scatterplot of DOMs corresponding to A1, A2 and A3 (n = 16) 

 
 
All of the above statements concerning the efficiency of SFCM are 

well supported also by 2D and 3D scatterplot of DOMs corresponding to the 
three partitions (very compact groups) (Figure 1) and the values of the fuzzy 
clustering validity indices considered (Table 3): partition coefficient-PC (optimal/ 
maximum value = 1); partition entropy-PE (optimal/minimum value = 0); 
Backer-Jain index-BJI (optimal/maximum value = 1) and Xie-Beni index-XBI 
(optimal/minimum value = 0).  
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Table 3. The clustering validity indices values 

 

Fuzzy 
partition 

Clustering validity index 
PC PE BJI XBI 

n = 16 0.8739 0.2604 0.9071 0.0623 
n = 21 0.8329 0.3277 0.8506 0.1415 
n = 5 0.7016 0.5429 0.6701 0.3702 

n = 45 0.6792 0.5660 0.7101 0.4381 
n = 24 0.5448 0.7743 0.5872 0.3555 

 
 
Step 2. Considering now the results obtained at the first step we will 

use the output partition of the training set as an input partition to predict the 
assignments of the five uncertain samples indicated in Table 4 and Table 5. 
All five samples are assigned to A1 but with quite different DOMs: B2 (0.985), 
Wla (0.927), Wlb (0.911), B3 (0.671) and B16 (0.381). The case of B16 is quite 
interesting because its DOMs to the three partitions are practically equal, and 
this aspect illustrates in fact a large difference of B16 from the samples 
assigned to A1, A2 and A3 with very high DOMs (Table 4 and Figure 2). We 
have to remark also the slight modification of the characteristics of prototypes 
and the values of fuzzy clustering validity indices (n = 21) comparing with data 
corresponding to the training data set (n = 16), presented also in Table 2 and 3.  

 

 
Figure 2. 3-D scatterplot of DOMs corresponding to A1, A2 and A3 (n = 21) 
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Table 4. The input and output partitions of the predicting set (n=21) 

 

No S* Site P* Input partitions Output partitions 
A1 A2 A3 A1 A2 A3 

1 
 

A2 PPS N-W 0.977 0.010 0.013 0.977 0.010 0.013 
2 

 

A8 PPS N-W 0.964 0.017 0.019 0.964 0.017 0.019 
3 

 

A8b PPS N-W 0.997 0.001 0.001 0.997 0.001 0.002 
4 

 

B1 PPS N or C 0.019 0.038 0.943 0.019 0.038 0.944 
5 

 

B4 PPS N-W 0.995 0.002 0.004 0.995 0.002 0.003 
6 

 

B12 PPS N-W 0.987 0.006 0.007 0.987 0.006 0.007 
7 

 

B13 PPS N-W 0.979 0.009 0.012 0.979 0.009 0.012 
8 

 

B14 PPS N-W 0.985 0.006 0.009 0.985 0.006 0.009 
9 

 

B15 PPS N or C 0.049 0.141 0.810 0.049 0.141 0.810 
10 

 

B21 PPS N or C 0.023 0.058 0.919 0.023 0.058 0.919 
11 

 

W2 PP G 0.095 0.205 0.700 0.095 0.206 0.700 
12 

 

W3 PP G 0.006 0.972 0.022 0.006 0.972 0.022 
13 

 

W4 PP G 0.010 0.955 0.035 0.010 0.955 0.035 
14 

 

W5 PP G 0.036 0.115 0.849 0.036 0.115 0.849 
15 

 

W6a PP G 0.008 0.961 0.030 0.008 0.962 0.030 
16 W6b PP G 0.030 0.126 0.844 0.030 0.126 0.844 
17 B2 PPS ? - - - 0.985 0.007 0.008 
18 B3 PPS ? - - - 0.671 0.177 0.152 
19 B16 PPS ? - - - 0.381 0.293 0.326 
20 Wla PP ? - - - 0.927 0.031 0.042 
21 Wlb PP ? - - - 0.911 0.041 0.048 

*Symbol; PPS= Porta principalis sinistra; PP= Porta Praetoria; G= Gaulish 
production; N-W= north-western; N or C= north or central; ? = uncertain; P*= position 
 

Step 3. In order to identify the origin of the 24 common ware samples, 
we used the results obtained at step 1 and 2 as input partition presented in 
Table 5 and the spectral data. The final results are shown in Table 5. 
Considering the DOMs of the 24 samples to the three partitions the following 
conclusions can be formulated. Six common ware samples are assigned to 
partition A1, four with relatively high DOMs: A3 (0.878), B5 (0.701), B18 
(0.886), B19 (0.767), and two samples with small DOMs: B11 (0.531) and 
B20 (0.571). Thirteen samples (A6, A7, A9, A10, A11, A12, A13, B8, B9, 
B10, B22, B23, B24) are assigned to partition A2 with relatively small and 
quite similar DOMs within the range (0.501-0.685). Five samples (A4, A5, 
B6, B7, B17) are assigned to partition A3 with relatively high DOMs within 
the range (0.744-0.911). The similarity and differences of the considered 
common wares with terra sigillata is also well illustrated in Figure 3. 
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Table 5. The input and output partitions of the predicting set (n = 45) 
 

No S* Site P* Input partitions Output partitions 
A1 A2 A3 A1 A2 A3 

1 
 

A2 PPS N-W 0.977 0.010 0.013 0.977 0.010 0.013 
2 

 

A8 PPS N-W 0.964 0.017 0.019 0.964 0.017 0.019 
3 

 

A8b PPS N-W 0.997 0.001 0.002 0.997 0.001 0.002 
4 

 

B1 PPS N or C 0.019 0.038 0.944 0.019 0.038 0.944 
5 

 

B4 PPS N-W 0.995 0.002 0.003 0.995 0.002 0.003 
6 

 

B12 PPS N-W 0.987 0.006 0.007 0.987 0.006 0.007 
7 

 

B13 PPS N-W 0.979 0.009 0.012 0.979 0.009 0.012 
8 

 

B14 PPS N-W 0.985 0.006 0.009 0.985 0.006 0.009 
9 

 

B15 PPS N or C 0.049 0.141 0.810 0.049 0.141 0.810 
10 

 

B21 PPS N or C 0.023 0.058 0.919 0.023 0.058 0.919 
11 

 

W2 PP G 0.095 0.205 0.700 0.095 0.206 0.700 
12 

 

W3 PP G 0.006 0.972 0.022 0.006 0.972 0.022 
13 

 

W4 PP G 0.010 0.955 0.035 0.010 0.955 0.035 
14 

 

W5 PP G 0.036 0.115 0.849 0.036 0.115 0.849 
15 

 

W6a PP G 0.008 0.962 0.030 0.008 0.962 0.030 
16 

 

W6b PP G 0.030 0.126 0.844 0.030 0.126 0.844 
17 B2 PPS ? 0.985 0.007 0.008 0.985 0.007 0.008 
18 B3 PPS ? 0.671 0.177 0.152 0.671 0.177 0.152 
19 B16 PPS ? 0.381 0.293 0.326 0.380 0.293 0.326 
20 Wla PP ? 0.927 0.031 0.042 0.927 0.031 0.042 
21 Wlb PP ? 0.911 0.041 0.048 0.911 0.041 0.048 
22 A3  C - - - 0.878 0.095 0.028 
23 A4  C - - - 0.037 0.052 0.911 
24 A5  C - - - 0.132 0.124 0.744 
25 A6  C - - - 0.291 0.639 0.071 
26 A7  C - - - 0.252 0.685 0.064 
27 A9  C - - - 0.310 0.619 0.072 
28 A10  C - - - 0.307 0.617 0.076 
29 A11  C - - - 0.352 0.570 0.078 
30 A12  C - - - 0.292 0.642 0.066 
31 A13  C - - - 0.325 0.553 0.123 
32 B5  C - - - 0.701 0.249 0.050 
33 B6  C - - - 0.087 0.120 0.793 
34 B7  C - - - 0.064 0.094 0.842 
35 B8  C - - - 0.305 0.559 0.136 
36 B9  C - - - 0.264 0.576 0.160 
37 B10  C - - - 0.285 0.514 0.201 
38 B11  C - - - 0.531 0.420 0.050 
39 B17  C - - - 0.095 0.131 0.774 
40 B18  C - - - 0.886 0.087 0.027 
41 B19  C - - - 0.767 0.177 0.056 
42 B20  C - - - 0.571 0.361 0.067 
43 B22  C - - - 0.322 0.609 0.068 
44 B23  C - - - 0.316 0.622 0.063 
45 B24  C - - - 0.351 0.501 0.148 

S* =Symbol; P* = Position; PPS= Porta principalis sinistra; PP= Porta Praetoria;     
G= Gaulish production; N-W= north-western; N or C= north or central 
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Figure 3. 3-D scatterplot of DOMs corresponding to A1, A2 and A3 (n = 45) 

 
 
CONCLUSIONS 

 
An advanced chemometric method, namely a robust supervised fuzzy 

method, has been presented and successfully applied for characterization and 
classification of 45 Roman potteries according to their chemical composition 
determined by spectroscopic methods. The obtained results (fuzzy partitions) 
and parameters of the prototypes (robust fuzzy means) clearly demonstrated 
the efficiency and information power of this new fuzzy method in Roman 
potteries characterization and classification and allow a better assignment of 
samples to a specific group according to their natural origin. 

 
 

EXPERIMENTAL SECTION 
 
Data sets, analytical and chemometrical methods 
 

In order to prove the highly informative capacity of the new supervised 
fuzzy method developed and presented here we applied it to an extremely 
relevant data set discussed by Mirti and al. [17]. The characteristics of 45 
sherds excavated within the boundaries of Augusta Praetoria (21 terrae 
sigillatae and 24 common wares) are presented in Table 5 and their summary 
chemical composition concerning the percent concentration of 8 metals 
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determined by spectroscopic methods is shown in Table 2. Pottery represents 
the most abundant category of portable material culture to come down to us 
from the Roman world, and it is thus by no means either surprising or 
inappropriate that pottery studies have enjoyed a position of some prominence 
in Roman archaeology [23-25]. Terra sigillata pottery is the most famous fine 
ware of the Roman period. It is characterized by the redness of its body (or 
paste) and slip (or gloss), similar to the colour of the clay (terra), and by the 
use of stamps (sigilla) in some cases. Sigillata production can be seen as the 
industrial activity of specialized workshops. This pottery appeared at first in 
the mid-first century BC in Italy. Augusta Praetoria (Arezzo) was probably the 
first important production centre. From the Augustan period (27 BC – 14 AD), 
sigillata’s success had ensured its spread within and outside the Italian 
Peninsula and branches were established in Pisa and in the south of Gaul. 
By visual examination of fragments collected at different sites and according 
to the results obtained applying various multivariate methods, such as 
hierarchical cluster analysis (HCA), PCA, non-linear mapping (NLM), including 
also soft independent modelling of class analogy (SIMCA) and K nearest 
neighbors (KNN), the authors assigned, with more or less accuracy, the 
majority of considered samples to three main groups. Some discrepancies 
and uncertain assignments were also mentioned [17].   
 

Supervised fuzzy method  
 

This new method is twofold, composed by a first, learning step and a 
subsequent prediction step. The underlying assumption is that there is a data 
set available, previously known and analysed. We are able to construct a 
fuzzy cluster substructure of that given data set. The method used here might 
vary, and the assumed cluster shape might vary as well. Once the fuzzy cluster 
substructure of the given data set is known, the fuzzy partition associated to 
this data set forms the basis for the prediction step. 

Consider a new data set with data items not yet clustered and 
associated to the fuzzy cluster substructure of the original known data. The 
purpose of the prediction step is to run a limited fuzzy clustering procedure 
able to embed these new data items into the fuzzy partition that is already 
available. At this point, the same method as in the first step is used, but with 
two major modifications. On one side, all the data items, from both steps, are 
used in the computation of the class prototypes. On the other side, only the 
fuzzy membership degrees of the new data items are set and updated along 
the execution of the method. The fuzzy memberships of the original data 
items, as computed in the learning step, are kept constant. 
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Learning step: fuzzify the input classes  
 

Consider a data set 𝑋 = {𝑥ଵ, … , 𝑥௡}, with 𝑥௝ ∈ 𝐑௦ for all values of j. 
Consider a given crisp c-partition of X, (i.e., a partition formed by c classes), 
where the value of c is predefined. Consider a given fuzziness constant m > 1. 
The purpose of this phase is to fuzzify the input partition and construct a 
fuzzy c-partition that best corresponds to the cluster structure of the data set. 
In the particular case of spherical prototypes, this procedure is the Fuzzy  
c-Means algorithm (FCM) [20,21]. 

We consider the classes 𝐴௜ having a particular geometrical shape, 
and, as such, characterized by a prototype 𝐿௜ of a certain kind. We are denoting 
by 𝐷(𝑥௝ , 𝐿௜) the dissimilarity between the data item 𝑥௝ and the prototype 𝐿௜. 
Depending on the shape of the classes, the dissimilarity D will be defined 
accordingly. 

We aim to minimize the objective function 
 𝐽(𝑃, 𝐿) = ෍෍𝐴௜(𝑥௝)௠ ∙ 𝐷(𝑥௝ , 𝐿௜)௡

௝ୀଵ
௖
௜ୀଵ . 

 
As explained by Bezdek [21], the procedure works by constructing a 

double Picard iterative process that consecutively minimizes the two functions 𝐽(𝑃,∙) and 𝐽(∙, 𝐿). The procedure follows: 
S1. Set l = 0; 
S2. Initialize fuzzy partition 𝑃(଴) = {𝐴ଵ, … ,𝐴௖} to be the given crisp c-

partition of X; 
S3. Compute the prototypes 𝐿௜ that minimize 𝐽(𝑃(௟),∙); 
S4. Compute the fuzzy partition 𝑃(௟ାଵ) that minimizes 𝐽(∙, 𝐿), as follows: 
 𝐴௜(௟ାଵ)൫𝑥௝൯ = 1∑ ൬𝐷(𝑥௝ , 𝐿௜)𝐷(𝑥௝ , 𝐿௞)൰ ଵ௠ିଵ௖௞ୀଵ

; 
 

S5. Compare 𝑃(௟ାଵ) with 𝑃(௟). If they are close enough, then STOP, 
else increase l by 1 and GOTO S3. 

For a proof of the minimization in step S4 see Bezdek [21]. 
The closeness of two fuzzy partitions is evaluated in step S5 using a 

distance. A good choice is the distance induced by the 𝐿ஶ norm, i.e., if the 
larger difference between two consecutive fuzzy membership degrees is 
smaller than certain 𝜀, then stop the procedure. 
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As discussed above, the choice for the geometrical shape of the 
classes influences the prototypes and the relationships leading to the 
minimization of 𝐽(𝑃(௟),∙) in step S3. For instance, let us assume that the 
classes have spherical shape. This leads to the prototypes 𝐿௜ being points in 
the space 𝐑௦ of the data set. Consequently, we define the dissimilarity as  𝐷൫𝑥௝ , 𝐿௜൯ = 𝑑(𝑥௝ , 𝐿௜)ଶ =  ฮ𝑥௝ − 𝐿௜ฮଶ 
where d is the Euclidean distance in the space 𝐑௦. It follows that the 
prototypes 𝐿௜ that minimize 𝐽(𝑃(௟),∙) at step S3 above are determined as 
follows [21]: 𝐿௜ = ∑ 𝐴௜൫𝑥௝൯௠ ∙ 𝑥௝௡௝ୀଵ∑ 𝐴௜(𝑥௝)௠௡௝ୀଵ . 

For examples of other geometrical prototypes, see Bezdek et al. [22] 
and Höppner et al. [13]. 

Following the results discussed by Dunn [20] and Bezdek [21], the 
method described above converges to a local optimum. Let us remember 
that our problem is to fuzzify a given crisp partition, such that it matches the 
best cluster structure of the data. The local optimum found in the vicinity of 
the initial crisp partition, as determined by this method, is, actually, the 
desired result. 

 
 
Prediction step: assign fuzzy values to new items 
 

Consider a data set 𝑋 = {𝑥ଵ, … , 𝑥௡}, with 𝑥௝ ∈ 𝐑௦ for all values of j. 
Consider known the fuzzy partition 𝑃 = {𝐴ଵ, … ,𝐴௖} corresponding to the 
cluster structure of X as determined in the previous step. Consider a data set 𝑌 = {𝑥௡ାଵ, … , 𝑥௡ା௣} we need to predict their fuzzy membership degrees to 
the given fuzzy partition P. The procedure is an extension of the procedure 
indicated in [21].  

Under the same assumptions as above, we will proceed as follows: 
S1. Set l = 0; 
S2. Initialize fuzzy partition 𝑃(଴) = {𝐴ଵ, … ,𝐴௖} to be the given fuzzy 

partition P; 
S3. Compute the prototypes 𝐿௜ that minimize 𝐽(𝑃(௟),∙); 
S4. Compute the fuzzy partition 𝑃(௟ାଵ) that minimizes 𝐽(∙, 𝐿), as follows: 
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𝐴௜(௟ାଵ)൫𝑥௝൯ = 1∑ ൬𝐷(𝑥௝ , 𝐿௜)𝐷(𝑥௝ , 𝐿௞)൰ ଵ௠ିଵ௖௞ୀଵ
, for 𝑗 = 𝑛 + 1, … ,𝑛 + 𝑝. 

 
S5. Compare 𝑃(௟ାଵ) with 𝑃(௟). If they are close enough, then STOP, 

else increase l by 1 and GOTO S3. 
At the step S4, only the fuzzy membership degrees of the data items 

in Y are updated. The values of the data items in X are not touched, as we 
are interested in predicting the fuzzy memberships for the newly available 
data items. The same discussion on the choice of prototypes L and 
dissimilarity D as above is, of course, valid at this point and the same 
reasoning on the local optima as above is also valid. 
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